Author: Nancy Fliesler

Fruit flies’ love lives could clarify brain cells’ role in motivation

If you have children present, you might want to click out of this post. But if you want to understand motivation, you’ll want to know about the sexual behavior of fruit flies.

In the brain, motivational states are nature’s way of matching our behaviors to our needs and priorities. But motivation can go awry, and dysfunction of the brain’s motivation machinery may well underlie addiction and mood disorders, says Michael Crickmore, PhD, a researcher in the F.M. Kirby Neurobiology Center. “Basically, every behavior or mood disorder is a disorder of motivation,” he says.

It’s already known that brain cells that communicate via the chemical dopamine are important in motivation—and are also implicated in ADHD, depression, schizophrenia and addiction. But what exactly are these cells up to, and who are they talking to? That’s where fruit flies come in.

“We study motivation in a simple system that we can bash very hard,” says Crickmore.

Read Full Story | Leave a Comment

‘Huggable’ robot may ease kids’ hospital stress


Can a robotic talking bear have therapeutic value? “The Bear,” part of a New York Times video series called Robotica, offers a glimpse of Huggable’s potential when Beatrice Lipp, a child with a chronic medical condition, visits the hospital, nervous about what’s to come.

“We want to offer kids one more way of helping them to feel OK where they are in what’s otherwise a really stressful experience,” explains Dierdre Logan, PhD, director of Psychological Services for Pain Medicine at Boston Children’s Hospital.

Huggable, a creation of the MIT Media Lab’s Personal Robots Group and the Boston Children’s Simulator Program, comes into Beatrice’s room to chat, play games like “I Spy” and tell jokes. The session is recorded on video, and a bracelet called a Q Sensor collects Beatrice’s physiologic data–changes in skin conductance, temperature and motion that may indicate distress. Researchers at Northeastern University are analyzing these data to gauge the robot’s effect. Eventually, Huggable will be able to react to the data and respond accordingly—offering relaxation exercises and guided imagery, for example, if a child remains anxious.

Currently, Huggable is voiced by Child Life staff, but the ultimate goal is for it to work autonomously. Beatrice is part of a 90-child study comparing Huggable, an ordinary teddy bear and a tablet Huggable image.

I admit: My immediate thought on seeing Huggable was that kids would immediately see him (her?) as a fake, but the bear’s robotic nature doesn’t seem to faze them. As Logan says in the video:

I think there’s a way of connecting with kids that’s different than what grownups have to offer. They have incredible imaginations. And they can really suspend disbelief. There can be a true relationship that develops between Huggable and a patient.

See another child interacting with Huggable.

 

Read Full Story | Leave a Comment

Souped-up fish facility boosts drug discovery and testing

closeup of zebrafish-20150526_ZebraFishCeremony-60The care and feeding of more than 250,000 zebrafish just got better, thanks to a $4 million grant from the Massachusetts Life Sciences Center to upgrade Boston Children’s Hospital’s Karp Aquatics Facility. Aside from the fish, patients with cancer, blood diseases and more stand to benefit.

From a new crop of Boston-Children’s-patented spawning tanks to a robotic feeding system, the upgrade will help raise the large numbers of the striped tropical fish needed to rapidly identify and screen potential new therapeutics. It’s all part of the Children’s Center for Cell Therapy, established in 2013. We put on shoe covers and took a look behind the scenes. (Photos: Katherine Cohen)

Read Full Story | Leave a Comment

Fast-regenerating mice offer clues for stroke, spinal cord and optic nerve injury

axon regeneration CNS
The CAST mouse from Thailand–genetically distinct from most lab mice–may have the right ingredients for nerve regeneration. (Courtesy Jackson Laboratory)

Second in a two-part series on nerve regeneration. Read part 1.

The search for therapies to spur regeneration after spinal cord injury, stroke and other central nervous system injuries hasn’t been all that successful to date. Getting nerve fibers (axons) to regenerate in mammals, typically lab mice, has often involved manipulating oncogenes or tumor suppressor genes to encourage growth, a move that could greatly increase a person’s risk of cancer.

A study published online last week by Neuron, led by the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, took a completely different tactic.

Seeing little success at first, the researchers wondered whether they were working with the wrong mice.

Read Full Story | Leave a Comment

Bringing CLARITY to families with undiagnosed disease

sick child-Shutterstock-croppedIn the U.S. alone, an estimated 30 million Americans suffer from a rare disorder. Many of them never receive a diagnosis, and often find themselves on a lonely journey, going from doctor to doctor and test to test, sometimes for many years, with no explanation for their symptoms.

How many people fall in the “undiagnosed” category is unclear, but in its first six years, the NIH’s Undiagnosed Diseases Program has received more than 10,000 inquiries. Without a diagnosis, it’s often difficult to qualify for insurance coverage, receive coordinated care or even connect with a support group.

What if the work of solving these medical mysteries could be crowd-sourced? That’s the goal of CLARITY Undiagnosed, an international challenge launching today in which scientific teams can compete to provide answers for five families with undiagnosed conditions. (Deadline for applications: June 11).

Read Full Story | Leave a Comment

Music and auditory skills can hone cognition and language

It may seem counterintuitive that your ability to tell different sounds apart would have anything to do with your ability to read or handle cognitive challenges. But that’s exactly what the lab of Nadine Gaab, PhD, has been showing.

Gaab discussed the research during a recent Longwood Seminar on Music as Medicine at Harvard Medical School:

The Gaab Lab has amassed an impressive body of work showing that auditory processing impairments correlate with developmental dyslexia, and that people who can detect tiny differences between sounds seem to do better both as musicians and as readers.

Read Full Story | Leave a Comment

Timing is everything: Circadian rhythms, protein production and disease

Protein production by the clock: mouse over to learn more. (Illustration: Yana Payusova, used with permission.)

Second in a two-part series on circadian biology and disease. Read part 1.

We are oscillating beings. Life itself arose among the oscillations of the waves and the oscillations between darkness and light. The oscillations are carried in our heartbeats and in our circadian sleep patterns.

A new study in Cell shows how these oscillations reach all the way down into our cells and help mastermind the timing of protein production.

Read Full Story | Leave a Comment

Bioinformatics, big data and putting the ‘count’ in accountable care

Tally_marks_counting_visitors-Wikimedia CommonsWhen you go into Netflix to choose a movie or Amazon to buy a book, they’re ready with proactive suggestions for your next purchase, based on your past history. Isaac Kohane, MD, PhD, would like to see something similar happening in medicine, where today, patients often find themselves repeating their medical history “again and again to every provider,” as Kohane recently told Harvard Medicine.

“Medicine as a whole is a knowledge-processing business that increasingly is taking large amounts of data and then, in theory, bringing that information to the point of care so that doctor and patient have a maximally informed visit,” says Kohane, chair of informatics at Boston Children’s Hospital and co-director of the Center for Biomedical Informatics at Harvard Medical School.

Read Full Story | Leave a Comment

Sounding out intracranial pressure with a hearing test

Heidary ear ICP measurement croppedBrain tumors, traumatic head injury and a number of brain and nervous system conditions can cause pressure to build up inside the skull. As intracranial pressure (ICP) rises, it can compress the brain and result in swelling of the optic nerves, damaging brain tissue and causing irreversible vision loss.

That’s what nearly happened to a 13-year-old boy who had three weeks of uncontrolled headaches and sudden double vision. His neuro-ophthalmologist at Boston Children’s Hospital, Gena Heidary, MD, PhD, found reduced vision in the right eye, along with poor peripheral vision, an enlarged blind spot and swelling of both optic nerves.

As Heidary suspected, he had idiopathic intracranial hypertension, a condition that can raise ICP both in children and adults. Heidary performed an operation around the optic nerve to relieve the pressure, and vision in the boy’s right eye gradually improved, though not completely. Heidary has had to monitor his ICP ever since to protect his visual system from further irreversible damage.

Unfortunately, such monitoring currently is pretty invasive.

Read Full Story | Leave a Comment

Proteomics provides new leads into nerve regeneration

Nerve regeneration. From Santiago Ramón y Cajal’s “Estudios sobre la degeneración y regeneración del sistema nervioso” (1913-14). Via Scholarpedia.

nerve regeneration proteomicsFirst in a two-part series on nerve regeneration. Read part 2

Researchers have tried for a century to get injured nerves in the brain and spinal cord to regenerate. Various combinations of growth-promoting and growth-inhibiting molecules have been found helpful, but results have often been hard to replicate. There have been some notable glimmers of hope in recent years, but the goal of regenerating a nerve fiber enough to wire up properly in the brain and actually function again has been largely elusive.

“The majority of axons still cannot regenerate,” says Zhigang He, PhD, a member of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “This suggests we need to find additional molecules, additional mechanisms.”

Microarray analyses—which show what genes are transcribed (turned on) in injured nerves—have helped to some extent, but the plentiful leads they turn up are hard to analyze and often don’t pan out. The problem, says Judith Steen, PhD, who runs a proteomics lab at the Kirby Center, is that even when the genes are transcribed, the cell may not actually build the proteins they encode.

That’s where proteomics comes in. “By measuring proteins, you get a more direct, downstream readout of the system,” Steen says.

Read Full Story | Leave a Comment