Author: Trisha Gura

Bridging academia and industry: Q & A with scientist and entrepreneur Timothy Springer

Timothy Springer on entrepreneurship

Biological chemist and molecular pharmacologist Timothy A. Springer, PhD, is poised at the nexus of academia and industry. As an academic — currently at Harvard Medical School, the Program in Cellular and Molecular Medicine at Boston Children’s Hospital and the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center — he has used monoclonal antibodies as research tools to unravel key mysteries of the immune system. As an entrepreneur, his discoveries — and those of others he has backed — have successfully launched seven companies. Drawing from his own entrepreneurship experience, he now aims to create his own innovation center, focused on accelerating antibody science toward drug discovery while helping nurture and mentor young scientist entrepreneurs. Vector sat down with Springer for his insights.

Read Full Story | Leave a Comment

Timothy Springer: scientist, serial entrepreneur and social advocate

Tim Springer resized

At the dawn of his career, immunologist, biological chemist, molecular pharmacologist and seven-time biomedical entrepreneur Timothy Springer thought science was a bad idea. “I was suspect of the purposes that science had been put to,” he says, “making Agent Orange and napalm.”

It was 1966, and Springer was a Yale undergrad thinking, “What the hell good is this Ivy League education? The best and brightest, the Ivy League-educated people, totally screwed up in getting us into the Vietnam War.”

So he dropped out. For a year, he lived on a Native American reservation in Nevada for Volunteers in Service to America (VISTA). He helped the Tribal Council draft resolutions, launched a 4-H club and lobbied for paved roads so kids could go to school.

Finally, he returned to school at the University of California, Berkeley — trying anthropology, sociology and psychology. Switching to biochemistry his junior year, Springer asked his advisor, scientific visionary Daniel Koshland, Jr., former editor of Science, “Do you think I can do this — graduate with a degree in biochemistry?”

Read Full Story | 3 Comments | Leave a Comment

A vaccine of one’s own: Precision medicine comes to immunization

precision vaccines
When it comes to vaccines, one size doesn’t fit all, researchers are finding.

Once upon a time, an English country doctor forged a treatment out of cow pus. Edward Jenner squeezed fluid from a cowpox sore on a milkmaid’s hand, and with it, successfully inoculated an eight-year-old boy, protecting him from the related smallpox virus.

It was the world’s first successful vaccination and laid the foundation for modern vaccinology: researchers formulate vaccines from a dead or disabled microbe — or its virulent components — and people sigh with relief when they don’t succumb to the disease.

But investigators are now finding holes in traditional vaccine dogma. “Vaccines were developed under the assumption that one size fits all,” says Ofer Levy, MD, PhD, a physician-scientist in the Division of Infectious Diseases at Boston Children’s Hospital and director of the collaborative Precision Vaccines Program. “That you develop a vaccine and it will protect the same way whether the patient is young, middle aged or elderly; male or female; living in a city or rural environment; northern or southern hemisphere; whether given day or night; summer or winter.”

Read Full Story | Leave a Comment

Shining light on a global killer — in 3D

Efforts to create a malaria vaccine have had limited success. Springer and colleagues solved the 3D structure of a key protein on the parasite -- and found a fragment which they'll soon test as a vaccine. (Photos_by_Angela/Flickr)

From the perspective of a wealthy country, malaria is a problem that is solved. It’s like smallpox. We ask, Who gets it?  Who cares? Isn’t it better to invest in diabetes?

In truth, malaria is more infectious than ever, endemic to 106 nations, threatening half the world’s population and stalling economic development and prosperity.

That’s part of the reason why Timothy A. Springer, PhD, an investigator in the Program in Cellular and Molecular (PCMM) Medicine at Boston Children’s Hospital and the Immune Disease Institute (IDI), took on Plasmodium falciparum, the parasite that causes malaria. Another is that he likes solving problems in immunology – and has made his name discovering molecules that both promote and fight infections, in part by understanding their structures.

Read Full Story | Leave a Comment

Seeking CLARITY: Genomics sleuths set out for the prize

There are no best practices for turning patient's genome sequence into information that a doctor can easily understand…and act on. Children's Hospital Boston's CLARITY Challenge calls on the genomics community to come up with those practices, and possibly help three families in the process. (michab37/Flickr)

Personalized medicine, harnessing genomics to improve patient care, is a great idea on paper. But investigators have long struggled to find a smooth route from the bench – where patients’ DNA samples are sequenced – to the bedside, where a doctor can use a genomics report to diagnose illness, prescribe treatments and offer means of prevention.

Looking for innovations, Children’s Hospital Boston decided to use the incentive of competition, launching a contest called the CLARITY Challenge. The winner will be the company or group that can best translate the science of genomics into tools and methods that integrate into and inform everyday care.

Read Full Story | Leave a Comment

Deconstructing vision: Motion, critical windows and curing blindness in India

(luisar/Flickr)

What if blind eyes could see? What does that mean?

That’s the question neuroscientist Pawan Sinha and his team at MIT has begun to answer in a uniquely humanitarian and scientific endeavor.

Project Prakash (named for the Sanskrit word for “light”) intended, at first, to cure blind children in India. It’s a noble effort, given that India has the world’s highest population of blind people, less than half of whom survive to their third birthday and less than one percent of whom are employable.

Sinha’s team screened 20,000 blind Indian children and treated 700 of them for correctable problems such as cataracts. As Sinha recounted at last month’s One Mind for Research forum, these 700 children now can see.

Sort of.

Read Full Story | Leave a Comment