Stories about: diabetes

News notes: Headlines in science & innovation

An occasional roundup of news items Vector finds interesting.

Blood-brain barrier on chip

vector news - blood brain barrier chip
(Wyss Institute at Harvard University)

The blood-brain barrier protects the brain against potentially damaging molecules, but its gate-keeping can also prevent helpful drugs from getting into the central nervous system. Reporting in PLoS One, a team at the Wyss Institute for Biologically Inspired Engineering describes a 3-D blood-brain barrier on a chip — a hollow blood vessel lined with living human endothelial cells and surrounded by a collagen matrix bearing human pericytes and astrocytes.

Read Full Story | Leave a Comment

Could Burmese pythons shed light on diabetes?

Burmese pythons diabetes

Originally from Southeast Asia, Burmese pythons are perhaps best known in the U.S. for the havoc they’ve been creating in the Everglades. Kept as pets and released into the wild, they can grow to nearly 20 feet long, and are hunting animals like marsh rabbits toward extinction (a problem Florida is trying to address with an annual Python Removal Competition).

But in the lab, at a diminutive 3 feet in length, Burmese pythons may hold valuable lessons about diabetes.

Read Full Story | Leave a Comment

Rescuing intestinal stem cells from attack in diabetes

diabetic enteropathy and colonic stem cells
Blood levels of the hormone IGFBP3 (enterostaminine), shown here in green, are markedly elevated in people with longstanding type 1 diabetes and launch a lethal attack on intestinal stem cells. Adding a protein that soaks up the excess hormone restores normal stem cell function and could help prevent or treat diabetic enteropathy. (All images by Riseon)

Up to 80 percent of people with long-standing type 1 diabetes develop gastrointestinal symptoms—abdominal pain, bloating, nausea, vomiting, diarrhea, constipation and fecal incontinence—that severely diminish quality of life. Recent evidence suggests that this condition, known as diabetic enteropathy, results from damage to the intestinal lining, but the details beyond that have been unclear.

A study in this week’s Cell Stem Cell, led by Paolo Fiorina, MD, PhD, now provides some answers. It demonstrates how diabetes can lead to destruction of the stem cells that maintain the intestinal lining, and identifies a potential drug that could protect these stem cells and prevent or treat diabetic enteropathy.

Read Full Story | Leave a Comment

How our neutrophils might sabotage wound healing in diabetes

When you get a cut or a scrape, your body jumps into action, mobilizing a complicated array of cells and factors to stem bleeding, keep the wound bacteria-free and launch the healing process.

For most of us, that process is complete in a couple of weeks. But for many people with type 1 and type 2 diabetes, delayed wound healing can have permanent consequences. For example, between 15 and 25 percent of diabetes patients develop chronic foot ulcers. Those ulcers are the root cause of roughly two-thirds of lower limb amputations related to diabetes.

Why don’t these wounds close? Blame a perfect storm of diabetic complications, such as reduced blood flow, neuropathy and impaired signaling between cells. According to research by Denisa Wagner, PhD, of Boston Children’s Hospital’s Program in Cellular and Molecular Medicine, a poorly understood feature of our immune system’s neutrophils may be one more ingredient in the storm.

Read Full Story | Leave a Comment

A skin cream for peripheral neuropathy? Small molecule may go a long way

The footpads of diabetic mice (line-D) treated with a cream containing XIB4035 have increased numbers of nerve terminals (shown in green in the lower right panel), whereas mice given a control cream (lower left) do not. The top two panels represent healthy “wild type” mice.
The footpads of diabetic mice given a cream containing XIB4035 (lower right) have new nerve terminals (shown in green), whereas mice given a control cream (lower left) do not. The top two panels represent healthy “wild type” mice.
About half of people with diabetes develop peripheral neuropathy. The most common form, small-fiber neuropathy, generally starts in the feet, causing pain, odd sensations like pricks and “pins and needles,” and—the most worrisome feature—a loss of sensation that can increase the chance of ulcers and infections.

In some cases, that may lead to the need for amputation—as happened with my diabetic great-grandfather whose numbed feet, unbeknownst to him, got too close to the fire.

While there are some treatments to reduce pain, there’s nothing that restores sensation. Nor do any existing treatments address the underlying cause of the neuropathy: the degeneration or dysfunction of the endings of the sensory neurons in the skin.

Read Full Story | 5 Comments | Leave a Comment

Out of the fire, into the pan: Lessons on managing chronic care in developing countries

Food insecurity is a major problem for diabetic patients at the Kay Mackensen clinic in Haiti where Julia Von Oettingen, MD (top center) serves as medical director.
Food insecurity is a major problem for diabetic patients at the Kay Mackensen clinic in Haiti where Julia Von Oettingen, MD (top center) serves as medical director.
In parts of the developing world, especially remote, rural areas, it’s not unusual for people with diabetes to ignore their symptoms until they’ve collapsed and need immediate care. By the time they see a doctor, their blood sugar levels might be so high as to cause diabetic ketoacidosis (DKA), where the body starts breaking down fats and proteins, turning their blood acidic and leaving them extremely dehydrated.

For many, it won’t be the first such episode. But for some, it can be the last.

Stories like this are increasingly common across large swaths of the developing world—as Diane Stafford, MD, an endocrinologist from Boston Children’s Hospital, discovered when she traveled to Kigali, Rwanda, through the Human Resources for Health program.

Read Full Story | Leave a Comment

Can we bypass the bypass to treat diabetes?

Diagram of Roux-en-Y gastric bypass
Gastric bypass surgery creates a small pouch in the stomach and connects it directly to the small intestine. Why does it help type 2 diabetes? (Wikimedia Commons)

Research shows that gastric bypass surgery, aside from inducing weight loss, resolves type 2 diabetes. Though weight loss and improved diabetes often go hand-in-hand, patients who undergo gastric bypass usually end up seeing an improvement in their type 2 diabetes even before they lose weight.

But why? To investigate, a research team led by Nicholas Stylopoulos, MD, of Boston Children’s Hospital’s Division of Endocrinology, spent a year studying rats and observed that after gastric bypass surgery, the way in which the small intestine processes glucose changes. They saw the intestine using and disposing of glucose, and showed that it thereby regulates blood glucose levels in the rest of the body, helping to resolve type 2 diabetes.

Basically, as the team reported recently in Science, the small intestine—widely believed to be a passive organ—is actually a major contributor to the body’s metabolism.

Read Full Story | Leave a Comment

Silencing immune attacks in type 1 diabetes

Could diabetes be treated without insulin shots? (Tess Watson/Flickr)
Could diabetes be treated without insulin shots? (Tess Watson/Flickr)

For decades, patients have managed their type 1 diabetes by injecting themselves with insulin to regulate the glucose in their blood. While this form of medical management addresses the immediate danger of low insulin levels, long-term complications associated with diabetes, like heart and kidney diseases, still threaten more than 215,000 children currently living with the disease in the United States.

“Insulin injections can manage hyperglycemia by reducing the patient’s glucose levels, but it is not the cure,” says Paolo Fiorina, MD, PhD, of the Nephrology Division at Boston Children’s Hospital.

Fiorina is currently involved in new research targeting a molecular pathway that triggers diabetes in the first place—potentially providing a permanent cure. It could potentially change the face of diabetes treatment in children.

Read Full Story | 13 Comments | Leave a Comment

Participatory surveillance in public health: Sharing is caring

Sharing via social media is a great opportunity for collecting better public health data and encouraging healthy behavior changes. (bengrey/Flickr)

We humans are sharing creatures. We talk about ourselves, what we think, what we know. If we weren’t like this, cocktail parties would be really boring, and Facebook and Twitter wouldn’t exist.

Nor would health care. At the most basic level, health care relies on give-and-take between patients and doctors—patients sharing their symptoms and concerns with doctors, and doctors sharing their knowledge with patients.

The same holds true for public health. Prevention and control efforts require lots of patients and doctors to share information so that public health agencies know where to target their resources.

But the give-and-take in public health is often slow and cannot always detect conditions or complications at rates that reflect reality. And usually it’s one-way—from the patient or public to surveyors.

Read Full Story | Leave a Comment

Empowering patients: Intelligent devices and apps for better health

Melinda Tang, MEng, is a software developer for the Innovation Acceleration Program at  Boston Children’s Hospital.

When children return home from the hospital after surgery, parents can be overwhelmed by the written information and instructions for follow-up. At the MIT Media Lab’s Health and Wellness Hackathon earlier this year, the focus was on empowering patients to take an active role in their health. As my colleague Brian Rosman described, our team from Boston Children’s Hospital attended and spent two weeks developing “Ralph,” a mobile application for managing post-operative care that incorporates an avatar and features of gaming to engage and motivate children to follow their regimen. I was one of the primary programmers for our group.

We won third place, working alongside five other talented teams. Here are some snapshots of what they were up to — helping patients manage asthma, diabetes, pain, cardiac rehab and more.

Read Full Story | 2 Comments | Leave a Comment