With no time to lose, parents drive CMT4J gene therapy forward

CMT4J
Talia Duff’s disorder, CMT4J, is a rare form of Charcot-Marie-Tooth. It has been modeled in mice that will soon undergo a test of gene therapy, largely through her parents’ behind-the-scenes work.

In honor of Rare Disease Day (Feb. 28), we salute “citizen scientists” Jocelyn and John Duff.

When Talia Duff was born, her parents realized life would be different, but still joyful. They were quickly adopted by the Down syndrome parent community and fell in love with Talia and her bright smile.

But when Talia was about four, it was clear she had a true problem. She started losing strength in her arms and legs. When she got sick, which was often, the weakness seemed to accelerate.

Talia was initially diagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), an autoimmune disease in which the body attacks its own nerve fibers. Treated with IV immunoglobulin infusions to curb the inflammation, she seemed to grow stronger — but only for a time. Adding prednisone, a steroid, seemed to help. But it also caused bone loss, and Talia began having spine fractures.

“We tried a lot of different things, but she never got 100 percent better,” says Regina Laine, NP, who has been following Talia in Boston Children’s Hospital’s Neuromuscular Center the past several years, together with Basil Darras, MD.That’s when we decided to readdress the possibility that it was genetic.”

Read Full Story | Leave a Comment

A gene therapy advance for muscle-wasting myotubular myopathy

X-linked myotubular myopathy XLMTM gene therapy
Nibs, a carrier of MTM whose descendants provided the basis for the gene therapy study. (Read more of her story.)

For more than two decades, Alan Beggs, PhD, at Boston Children’s Hospital has explored the genetic causes of congenital myopathies, disorders that weaken children’s muscles, and investigated how the mutations lead to muscle weakness. For one life-threatening disorder, X-linked myotubular myopathy (XLMTM), the work is approaching potential payoff, in the form of a clinical gene therapy trial.

Boys with XLMTM are born so weak that they are dependent on ventilators and feeding tubes to survive. Almost half die before 18 months of age.

Read Full Story | Leave a Comment

Lack of drug testing in kids exposes them to off-label harm

drug testing in children
Loopholes in current legislation let drug companies defer testing their products in children, so the majority of prescriptions are off-label.

Florence T. Bourgeois MD, MPH, is assistant professor of Pediatrics and Emergency Medicine at Harvard Medical School, faculty in the Computational Health Informatics Program, and Scientific Director of the Biobank for Health Discovery at Boston Children’s Hospital

Every day, more than half of children seen in outpatient clinics are prescribed a medication that is not FDA approved for the child’s age or diagnosis. Such off-label prescribing is widespread across pediatric conditions and treatment settings and as many as 90 percent of pediatricians have knowingly prescribed off-label medications.

Read Full Story | Leave a Comment

Honoring rare disease ‘citizen scientists’

citizen scientists

The global theme of this year’s Rare Disease Day (February 28) is research, and in keeping with that, we salute a very important group of people: citizen scientists. These can-do patients and family members are putting previously undiagnosed rare diseases on the map and driving the search for treatments. Citizen scientists play multiple roles: They keep scientists focused on therapeutic development, conduct online research to connect ideas, set up patient networks and data registries, raise money and start companies. They’ve earned a voice in clinical trial design and were instrumental in the passage of the 21st Century Cures Act.

Meet a few citizen scientists who have inspired us recently.

Read Full Story | Leave a Comment

4 tactical steps to designing for digital health

design digital health

Third in an ongoing series of Innovator’s Roadmap posts from Boston Children’s Hospital’s Innovation & Digital Health Accelerator (IDHA). Matt Murphy is Innovation Lead at IDHA.

We recently provided market sizing guidelines for healthcare innovators — strategies to help you determine your innovation’s total number of potential users and your sales opportunities. Next, we’ll take you through our approach to designing digital health products.

The research and design phase is a critical step in the development and commercialization of digital health innovations. This phase is often referred to as user-centered design or human factors design. It requires a significant investment in understanding your users (including clinicians, clinical teams, patients and/or caregivers) and their pain points (problems they repeatedly experience) before developing a technology-based solution.

In our initial consultations with innovators at Boston Children’s Hospital, we spend only a small amount of time discussing end technology solutions. Instead, we seek to understand the intended users, their pain points and how they will interact with the innovation, including clinical, workflow and business considerations.

It’s market research taken a step further. We recommend you follow a specific four-step procedure to optimize the research and design phase.

Read Full Story | Leave a Comment

Abraham Rudolph, MD: The path of a pediatric cardiology pioneer

Abraham Rudolph MD
Rudolph (left) at Boston Children’s Hospital with Cardiologist-in-Chief Alexander Nadas, MD, c. 1958.

Abraham Rudolph, MD, who recently turned 93, has watched his chosen corner of the medical profession — pediatric cardiology — grow from rudimentary beginnings into a robust, multivariate discipline. Yet while his name is known worldwide in pediatric cardiology circles, he entered cardiology more than 50 years ago only by happenstance.

Born in South Africa in 1924, Rudolph came to the United States in 1951 to train in cardiology by invitation of Charles Janeway, MD, then Physician-in-Chief at Boston Children’s Hospital. Concerned about providing for his wife and newborn daughter, he chose cardiology over hematology or neurology because it offered a salary; many other physician-training opportunities at the time were unpaid. That first year, as the hospital’s first cardiology fellow, he made $3,000 — thanks to a family donation.

He stayed on for nine years, becoming director of the cardiac catheterization laboratory. There he found his focus.

“I became more and more interested in the physiology of the circulation, particularly the problems surrounding infancy,” he said in a 1996 interview with the American Academy of Pediatrics. “At that time, there were relatively few places that were doing anything about infants with heart disease. Most of the emphasis was on older children.”

Read Full Story | Leave a Comment

Science Seen: Brain myelination in tuberous sclerosis complex

tuberous sclerosis brain myelination improved with CTGF deletion

Tuberous sclerosis complex (TSC) strikes about 1 in 6,000 people and is marked by numerous benign tumors in the brain, kidneys, heart, lungs and other tissues. Children with TSC often have epilepsy, intellectual disability and/or autism, showing disorganized white matter in their brains. Work in the lab of Mustafa Sahin, MD, PhD, has shown that the TSC1 mutation disrupts the brain’s ability to adequately wrap its nerve fibers in myelin, the insulating coating that enhances nerves’ ability to conduct signals. A new study from the lab shows why: neurons lacking functional TSC1 secrete increased amounts of connective tissue growth factor (CTGF). This impairs the development of oligodendrocytes, the cells that do the myelinating. Here, electron microscopy in a TSC mouse model shows a decreased number of nerve fibers wrapped in myelin (dark ovals) on the left. On the right, genetic deletion of CTGF increases myelination. Sahin plans to delve further to develop potential pharmaceutical approaches to restore myelination in TSC. Read more in the Journal of Experimental Medicine. (Image: Ebru Ercan et al.)

Read Full Story | Leave a Comment

Stem cell workaround cracks open new leads in Diamond Blackfan anemia

Diamond Blackfan anemia iPS cells hematopoietic progenitor cells
Though not bona-fide stem cells, hematopoietic progenitor cells produce red blood cells when exposed to certain chemicals. Could some of these compounds lead to new drugs for Diamond Blackfan anemia?

Diamond Blackfan anemia (DBA) has long been a disease waiting for a cure. First described in 1938 by Louis K. Diamond, MD, of Boston Children’s Hospital and his mentor, Kenneth Blackfan, MD, the rare, severe blood disorder prevents the bone marrow from making enough red blood cells. It’s been linked to mutations affecting a variety of proteins in ribosomes, the cellular organelles that themselves build proteins. The first mutation was reported in 1999.

But scientists have been unable to connect the dots and turn that knowledge into new treatments for DBA. Steroids are still the mainstay of care, and they help only about half of patients. Some people eventually stop responding, and many are forced onto lifelong blood transfusions.

Researchers have tried for years to isolate and study patients’ blood stem cells, hoping to recapture the disease process and gather new therapeutic leads. Some blood stem cells have been isolated, but they’re very rare and can’t be replicated in enough numbers to be useful for research.

Induced pluripotent stem (iPS) cells, first created in 2006 from donor skin cells, seemed to raise new hope. They can theoretically generate virtually any specialized cell, allowing scientists model a patient’s disease in a dish and test potential drugs.

There’s been just one hitch. “People quickly ran into problems with blood,” says hematology researcher Sergei Doulatov, PhD. “iPS cells have been hard to instruct when it comes to making blood cells.”

Read Full Story | Leave a Comment

Gene therapy restores whisper-fine hearing, balance in Usher syndrome mice

gene therapy for deafness
Sensory hair cells contain tiny cilia that get wiggled by incoming sound waves, sparking a signal to the brain that ultimately translates to hearing. Gene therapy restored this tidy “V” formation. (Credit: Gwenaelle Géléoc and Artur Indzkykulian)

The ear is a part of the body that’s readily accessible to gene therapy: You can inject a gene delivery vector (typically a harmless virus) and it has a good chance of staying put. But will it ferry the corrected gene into the cells of the hearing and/or vestibular organs where it’s most needed?

Back in 2015, a Boston Children’s Hospital/Harvard Medical School team reported using gene therapy to restore rudimentary hearing in mice with genetic deafness. Previously unresponsive mice began jumping when exposed to abrupt loud sounds. But the vector used could get the corrected genes only into the cochlea’s inner hair cells. To really restore significant hearing, the outer hair cells need to be treated too.

Read Full Story | Leave a Comment

A guide to market sizing for healthcare innovators

market sizing healthcare innovation

Second in a series of Innovator’s Roadmap posts from Boston Children’s Hospital’s Innovation & Digital Health Accelerator (IDHA). Matt Murphy is Innovation Lead at IDHA.

We recently published some helpful tips on how to create a business model that accelerates and operationalizes a healthcare innovation. But a business model — and the unique value proposition you’ll offer to your users or customers — cannot exist on its own. It must serve a specific market or population.

Who are your users? And how many potential users would your product serve? Market sizing will enable you to answer these questions and others as you determine the financial opportunity and economic sustainability of your innovation.

Read Full Story | Leave a Comment