Author: Alexander DeVine

Induced pluripotent stem cells: Choosing a reprogramming method

options for making induced pluripotent stem cells

Alexander DeVine is a research assistant in the Stem Cell Research Program at Boston Children’s Hospital.

Few discoveries have so transformed human stem cell research as have induced pluripotent stem cells (iPSCs). Like embryonic stem cells (ESCs), iPSCs possess, in principle, the potential to produce any of the cells in the human body—hence the term pluripotent. Because they can be derived by “reprogramming” easily accessible cell types (e.g., blood or skin cells) from any patient, rather than by creating and dissecting an embryo from donated sperm and eggs, iPSCs are more readily available to researchers than ESCs and better poised for clinical application.

In the seven years since Shinya Yamanaka, Jamie Thomson, and Boston Children’s Hospital’s own George Daley independently described the first methods for generating human iPSCs, these versatile cells have taken stem cell laboratories by storm. Today, they are used around the globe to study human development and to model a plethora of common and rare genetic conditions, from Parkinson’s disease to Fanconi anemia to type I diabetes. iPSCs are also starting to enter the clinic: in Japan, patients are already being recruited to a clinical trial to test the safety and efficacy of iPSC-derived therapeutics for the treatment of blindness.

Read Full Story | Leave a Comment