Author: Kat J. McAlpine

Science Seen: New microscope reveals biological life as you’ve never seen it before

Various images of cells captured by a new microscope reported in Science
A new microscope allows us to see how cells behave in 3D and real time inside living organisms.

Astronomers developed a “guide star” adaptive optics technique to obtain the most crystal-clear and precise telescopic images of distant galaxies, stars and planets. Now a team of scientists, led by Nobel laureate Eric Betzig, PhD, are borrowing the very same trick. They’ve combined it with lattice light-sheet to create a new microscope that’s able to capture real-time, incredibly detailed and accurate images, along with three-dimensional videos of biology on the cellular and sub-cellular level.

The work — a collaboration between researchers at Howard Hughes Medical Institute, Boston Children’s Hospital and Harvard Medical School —  is detailed in a new paper just published in Science.

“For the first time, we are seeing life itself at all levels inside whole, living organisms,” said Tom Kirchhausen, PhD, co-author on the new study, who is a senior investigator in the Program in Cellular and Molecular Medicine at Boston Children’s Hospital and a professor of cell biology and pediatrics at Harvard Medical School (HMS).

“Every time we’ve done an experiment with this microscope, we’ve observed something novel — and generated new ideas and hypotheses to test,” Kirchhausen said in a news story by HMS. “It can be used to study almost any problem in a biological system or organism I can think of.”

Read Full Story | Leave a Comment

News Note: A fresh perspective on RNA with big implications for drug development 

RNA-based drugs are the future of therapeuticsRibonucleic acid, or RNA, has long been underappreciated for its role in gene expression. Until recent years, RNA has been thought of merely as a messenger, shuttling DNA’s instructions to the genetic machinery that synthesizes proteins.

But new discoveries of RNA functions, modifications and its ability to transcribe sections of the genome that were previously considered “junk DNA” has led to the discovery of a huge number of new druggable targets.

These new insights into RNA’s complex purposes have largely been uncovered through ever-increasingly sensitive and affordable sequencing methods. As a result, RNA-based drugs now stand to greatly extend our ability to treat diseases beyond the scope of what’s possible with small molecules and biologics.

Although several RND-based drug approaches have already been established, some barriers still prevent these strategies from working broadly. In a review paper for Nature Structural and Molecular Biology, Judy Lieberman, MD, PhD, of the Program in Cellular and Molecular Medicine of Boston Children’s Hospital, lays out where RNA-based drug development currently stands.

Lieberman, who has helped pioneer the RNA-based drug revolution herself, was the first scientist to show in an animal disease model that small, double-stranded RNAs could be used as drugs and leveraged to knock down genes in cells.

Read Lieberman’s review: “Tapping the RNA world for therapeutics.”

Read Full Story | Leave a Comment

Zeroing in on the fetal-to-adult hemoglobin switch and a new way to combat sickle cell disease

Normal red blood cell vs. sickle-shaped blood cell, which is found in sickle cell disease
Normal red blood cell vs. sickle-shaped blood cell.

It’s been known for more than 40 years that in rare individuals, lingering production of the fetal form of hemoglobin — the oxygen-transporting protein found in red blood cells — can reduce the severity of certain inherited blood disorders, most notably sickle cell disease and thalassemia. Typically, however, a protein called BCL11A switches off fetal hemoglobin production past infancy, but exactly how this happens has not been well understood until now.

In a new paper in Cell, researchers at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center have revealed how BCL11A controls the switch in the body’s production of fetal hemoglobin to adult hemoglobin. It does so by binding to a DNA sequence — made up of the bases T-G-A-C-C-A — that lies just in front of the fetal hemoglobin genes.

Another approach to curing sickle cell disease is already being evaluated in a new clinical trial at Dana-Farber/Boston Children’s. The novel gene therapy restores fetal hemoglobin production by genetically suppressing BCL11A, which prevents it from blocking fetal hemoglobin production. Learn more.

“Genetically modifying this TGACCA segment could be another possible strategy to cure sickle cell disease by blocking BCL11A’s ability to bind to this DNA site and switch off fetal hemoglobin production,” says Stuart Orkin, MD, senior author on the study.

Read Full Story | Leave a Comment

The softer the nanoparticle, the better the drug delivery to tumors

Nanolipogels, pictured here, are a promising drug delivery system
Nanolipogels of different stiffness, as seen through a transmission electron microscope. Credit: Moses lab/Boston Children’s Hospital.

For the first time, scientists have shown that the elasticity of nanoparticles can affect how cells take them up in ways that can significantly improve drug delivery to tumors.

A team of Boston Children’s Hospital researchers led by Marsha A. Moses, PhD, who directs the Vascular Biology Program, created a novel nanolipogel-based drug delivery system that allowed the team to investigate the exclusive role of nanoparticle elasticity on the mechanisms of cell entry.

Their findings — that softer nanolipogels more efficiently enter cells using a different internalization pathway than their stiffer counterparts — were recently published in Nature Communications.

Read Full Story | Leave a Comment

A breakthrough in our understanding of how red blood cells develop

Artist's rendering of red blood cells
Red blood cells.

By taking a deep dive into the molecular underpinnings of Diamond-Blackfan anemia, scientists have made a new discovery about what drives the development of mature red blood cells from the earliest form of blood cells, called hematopoietic (blood-forming) stem cells.

For the first time, cellular machines called ribosomes — which create proteins in every cell of the body — have been linked to blood stem cell differentiation. The findings, published today in Cell, have revealed a potential new therapeutic pathway to treat Diamond-Blackfan anemia. They also cap off a research effort at Boston Children’s Hospital spanning nearly 80 years and several generations of scientists.

Diamond-Blackfan anemia — a severe, rare, congenital blood disorder — was first described in 1938 by Louis Diamond, MD, and Kenneth Blackfan, MD, of Boston Children’s. The disorder impairs red blood cell production, impacting delivery of oxygen throughout the body and causing anemia. Forty years ago, David Nathan, MD, of Boston Children’s determined that the disorder specifically affects the way blood stem cells become mature red blood cells.

Then, nearly 30 years ago, Stuart Orkin, MD, also of Boston Children’s, identified a protein called GATA1 as being a key factor in the production of hemoglobin, the essential protein in red blood cells that is responsible for transporting oxygen. Interestingly, in more recent years, genetic analysis has revealed that some patients with Diamond-Blackfan have mutations that block normal GATA1 production.

Now, the final pieces of the puzzle — what causes Diamond-Blackfan anemia on a molecular level and how exactly ribosomes and GATA1 are involved — have finally been solved by another member of the Boston Children’s scientific community, Vijay Sankaran, MD, PhD, senior author of the new Cell paper.

Read Full Story | Leave a Comment

News Note: Modeling sepsis better to find a cure faster

In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads.
New assessment criteria for monitoring sepsis in pig models could help clinical researchers more accurately evaluate potential sepsis treatments in preclinical experiments. In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads. Credit: Wyss Institute at Harvard University

Sepsis, or blood poisoning, occurs when the body’s response to infection damages its own tissues, leading to organ failure. It is the most common cause of death in people who have been hospitalized, yet no new therapies have been developed in the last 30 years. Many treatments that have prevented death in animal experiments have failed in clinical trials, indicating that a more clinically-relevant sepsis model is needed for therapeutic development.

To bridge this gap, a team of scientists from the Wyss Institute at Harvard University and Boston Children’s Hospital think a better experimental model of sepsis in pigs could help weed out the therapies most likely to succeed in humans. Their method, a scoring criteria to evaluate sepsis in pigs that closely mirrors standard human clinical assessment, is reported in Advances in Critical Care Medicine.

Read Full Story | Leave a Comment

This autoimmune awareness month, meet Boston scientists who are pushing the envelope in autoimmune research

“Red” and “green” B cells emerge from the pack as best producers of the potent autoantibodies in a mouse model of the autoimmune disease known as lupus.
In a mouse model of lupus, colorized red and green B cells outdo their blue, yellow and aqua competitors. Each color represents a different B cell clone. The proliferation of red and green B cells demonstrates that these clones have emerged as the best producers of autoantibodies. Credit: Michael Carroll lab (Boston Children’s Hospital/Harvard Medical School)

The basic biological mechanisms that underpin autoimmune disorders are finally coming to light. Researchers in Boston’s Longwood medical area — a neighborhood where the streets are flanked by hospitals, research institutions and academic centers — are setting the stage for a new wave of future therapies that can prevent, reduce or even reverse symptoms of disease.

Inside the lab of Michael Carroll, PhD, scientists are working to understand how and why immune cells start to attack the body’s own tissues; it turns out the immune system’s B cells compete with each other in true Darwinian fashion. On the way to this discovery, the lab has flushed out new potential drug targets that could ease autoimmune symptoms — or stop them entirely — by “resetting” the body’s tolerance to itself.

Carroll’s team has also drawn some of the first links between chronic inflammation, synapse loss and neuropsychiatric disease in lupus.

The implications for a link between inflammation and synapse loss go beyond lupus because inflammation underpins so many diseases and conditions, ranging from Alzheimer’s to viral infection and even to to chronic stress. In which case, are we all losing synapses to some varying degree? Carroll plans to find out.

Meanwhile, Sun Hur, PhD, and members of her lab are digging deep on a genetic variant and its link to pediatric inflammatory autoimmune disorders like Aicardi-Goutieres syndrome.

“We’ve found that chronic inflammation and autoinflammatory disorders can originate from genetic mutations to MDA5 that cause it to misrecognize ‘self’ as ‘non-self,’ essentially launching the immune system into self-attack mode,” said Hur.

Read Full Story | Leave a Comment

News Note: Why is this eye cancer making headlines?

This illustrations shows a catheter is used during intra-arterial chemotherapy for retinoblastoma.
During intra-arterial chemotherapy for retinoblastoma, a catheter is placed into the common femoral artery and threaded through a child’s vasculature to access the blood vessel of the affected eye and deliver a concentrated dose of chemotherapy. Illustration: Dana-Farber/Boston Children’s.

Retinoblastoma is a rare cancer that originates in the retina, the tissue in the back of the eye that converts light into visual information that is interpreted by the brain.

One retinoblastoma symptom in particular is finding itself in the spotlight. With a rise in social media use in recent years, retinoblastoma has attracted media attention for being a type of cancer that can sometimes be detected through photographs. Across the internet, news stories like this one abound in which friends or relatives have alerted parents to the potential risk of eye cancer after noticing that a child’s pupil appears white instead of red — a symptom called leukocoria — on photos posted to social media.

Fortunately, with proper diagnosis and treatment, 95 percent of children diagnosed with retinoblastoma can be cured. What’s more, a catheter-based treatment approach is now sparing patients from some of the side effects that can be expected from more traditional therapies.

Read Full Story | Leave a Comment

News Note: Norovirus outbreak threatens the Olympics

The HealthMap team at Boston Children's is currently tracking norovirus at the Olympics
The Computational Epidemiology Team at Boston Children’s Hospital tracks online, informal sources for disease outbreak monitoring and real-time surveillance of emerging public health threats through a platform called HealthMap. This is an image of what their surveillance dashboard is currently tracking (Feb. 15, 2018) in South Korea. Visit http://www.healthmap.org/en/ for more.

The 2018 Winter Olympics have brought nearly 3,000 delegates from 206 countries together in PyeongChang, South Korea. But just a week after kicking off on February 8, the games and its attendees are already being interrupted by a fast-spreading norovirus outbreak.

Norovirus is an extremely infectious disease transmitted through food, water or by touching a contaminated surface. Infection causes inflammation of the stomach and intestines, which can lead to symptoms including stomach pains, nausea, vomiting and diarrhea.

In PyeongChang, there have already been 199 confirmed cases of norovirus — many of those sickened have been security guards hired for the games. Due to severe gastrointestinal symptoms, 41 guards have been hospitalized and more than 1,200 were placed in quarantine. 

Read Full Story | Leave a Comment

Breaking down brain disease one DNA break at a time

DNA breaks are depicted in this artistic renderingCells throughout the human body are constantly being damaged as a part of natural life, normal cellular processes, UV and chemical exposure and environmental factors — resulting in what are called DNA double-strand breaks. Thankfully, to prevent the accumulation of DNA damage that could eventually lead to cell dysfunction, cancer or death, the healthy human body has developed ways of locating and repairing the damage.

Unfortunately, these DNA repair mechanisms themselves are not impervious to genetic errors. Genetic mutations that disrupt DNA repair can contribute to devastating disease.

Across the early-stage progenitor cells that give rise to the human brain’s 80 billion neuronal cells, genomic alterations impacting DNA repair processes have been linked to neuropsychiatric disorders and the childhood brain cancer medulloblastoma. But until now, it was not known exactly which disruptions in DNA repair were involved.

A Boston Children’s Hospital team led by Frederick Alt, PhD, has finally changed that.

Read Full Story | Leave a Comment