Author: Nancy Fliesler

Two resilient dogs point to new targets for Duchenne muscular dystrophy

Duchenne muscular dystrophy protective genes
Suflair, at right, is alive and well at 11 years despite having the DMD mutation (courtesy Natássia Vieira)

Two golden retrievers that had the genetic mutation for Duchenne muscular dystrophy (DMD), yet remained healthy, have offered up yet another lead for treating this muscle-wasting disorder.

For several years, Natássia Vieira, PhD, of the University of São Paolo, also a fellow in the Boston Children’s Hospital lab of Louis Kunkel, PhD, has been studying a Brazilian colony of golden retrievers. All have the classic DMD mutation and, as expected, most of these dogs are very weak and typically die by 2 years of age. That’s analogous to children with DMD, who typically lose the ability to walk by adolescence and die from cardiorespiratory failure by young adulthood.

But two dogs appeared unaffected. Both ran around normally. The elder dog, Ringo, lived a full lifespan, and his son Suflair is still alive and well at age 11.

Read Full Story | Leave a Comment

Webchat to highlight what’s new in pediatric brain tumors

pediatric brain tumors, child MRI

Last September, the National Center for Health Statistics reported that brain tumors have overtaken the much more common leukemia as the leading cause of death from pediatric cancer. Although progress has been made and the promise of more progress is on the horizon, the cure rate for childhood brain tumors lags behind a number of other pediatric cancers.

As pediatric neuro-oncologist Peter Manley, MD, of Dana-Farber/Boston Children’s Cancer and Blood Disorders Center told Live Science, new research on cancer genomics “is so impressive that my feeling is that we will continue to see a decline in deaths.”

To mark Brain Tumor Awareness Month, Mark Kieran, MD, PhD, clinical director of the Brain Tumor Center at Dana-Farber/Boston Children’s, will host a webchat on Monday, May 22 (3:30 p.m. ET). The live chat will highlight the latest research and treatments for pediatric brain tumors. Here’s a look back at some recent developments:

Read Full Story | Leave a Comment

Medical milestone: Making blood stem cells in the lab

blood stem cells
The gradation of pink-to-blue cells illustrates the transition from hemogenic endothelial cells to blood progenitor cells during normal embryonic blood development. Daley, Sugimura and colleagues recreated this process in the lab, then added genetic factors to produce a mix of blood stem and progenitor cells. (O’Reilly Science Art)

Pluripotent stem cells can make virtually every cell type in the body.  But until now, one type has remained elusive: blood stem cells, the source of our entire complement of blood cells.

Since human embryonic stem cells (ES cells) were isolated in 1998, scientists have tried to get them to make blood stem cells. In 2007, the first induced pluripotent stem (iPS) cells were made from human skin cells, and have since been used to generate multiple cell types, such as neurons and heart cells.

But no one has been able to make blood stem cells. A few have have been isolated, but they’re rare and can’t be made in enough numbers to be useful.

Now, the lab of George Daley, MD, PhD, part of Boston Children’s Stem Cell Research program as finally hit upon a way to create blood stem cells in quantity, reported today in Nature.

Read Full Story | Leave a Comment

Preparing patients and families to manage ventricular assist devices

Beth Hawkins ventricular assist devices

Children in severe heart failure sometimes have a ventricular assist device (VAD) implanted in their chest. VADs are electrically-powered heart pumps that can tide children over while they wait for a heart transplant. They can also be implanted long term if a child is ineligible for transplant, or simply buy children time to recover their own heart function.

Because problems with VADs can be life-threatening, families need extensive training in managing the device and its external controller at home. Nurse practitioner Beth Hawkins RN, MSN, FNP-C, and her colleagues in the Boston Children’s VAD Program begin the training at the child’s hospital bedside while they are still in the cardiac ICU. But despite lectures, demos and practice opportunities, the prospect of maintaining a VAD remains terrifying for many parents and children.

“A lot of families feel their child is attached to a ticking time bomb that could go off at any time,” says Hawkins. “Many say taking a child home on a VAD feels like having a newborn baby again.”

Hawkins realized that families needed more support.

Read Full Story | Leave a Comment

To address chronic pain, you need to address sleep

chronic pain
Acute or chronic sleep loss exacerbates pain, finds a study that kept mice awake for long periods by entertaining them.

The ongoing opioid epidemic underscores the dire need for new pain medications that aren’t addicting. New research published today in Nature Medicine suggests a possible avenue of relief for people with chronic pain: simply getting more sleep, or, failing that, taking medications to promote wakefulness.

In an unusually rigorous mouse study, either approach relieved pain better than ibuprofen or even morphine. The findings reveal an unexpected role for alertness in setting pain sensitivity.

Read Full Story | 1 Comment | Leave a Comment

Protein science 2.0: Amping up antibodies

Institute for Protein Innovation antibody libraries
The Institute for Protein Innovation, launching next week with $15 million in grants and philanthropy, aims to develop comprehensive, open-source libraries of antibodies targeting human proteins.

It began with the proteins. Before Watson and Crick unraveled DNA’s double helix in the 1950s, biochemists snipped, ground and pulverized animal tissues to extract and study proteins, the workhorses of the body.

Then, in 1990, the Human Genome Project launched. It promised to uncover the underpinnings of all human biology and the keys to treating disease. Funding for DNA and RNA tools and studies skyrocketed. Meanwhile, protein science fell behind.

While genomics unveiled a wealth of information, including the identity of genes that lead to disease when mutated, researchers still do not fully understand what all the genes really do and how mutations change their function and cause disease.

Now proteins are promising to provide the missing link.

Read Full Story | Leave a Comment

GALLERY: Custom-built ‘trainers’ help clinicians master procedures

medical mannequins manikins trainers medical simulation
Andrew Hosmer (left) and Noah Schulz at the bench, building parts for medical trainers.

Walking into the SIMPeds Engineering Studio, a few blocks from Boston Children’s Hospital, the first thing you notice is body parts — high-fidelity replicas of human anatomy in various sizes. Some are in a glass display case, while others are laid out in various states of assembly, from a lone finger to the complete abdominal cavity of a newborn, packed with diminutive organs. Six newborn-sized, hollow duodenums, cast in rubber over a plastic mold, hang ready near a workbench.

These aren’t your usual medical mannequins.

In the adjoining InventorSpace, three 3D printers stand ready to fabricate additional custom parts. Some will be used by surgeons to rehearse an upcoming complex operation. Others are used for general training and preparedness purposes.

Read Full Story | Leave a Comment

Looking between seizures to map seizures’ origins

seizure mapping

When epilepsy can’t be controlled with drugs, neurosurgery is sometimes curative, if the seizures are coming from discrete brain tissue that can be safely removed.

Finding these diseased areas, however, can require invasive surgery to place grids of electrodes on the brain’s surface. That’s followed by long-term, 24-hour EEG monitoring — typically for a week — until a seizure happens. Neurosurgeons then use this data to map a surgical path. But to actually remove the diseased tissue, a second operation is needed.

That’s enough to deter many families from epilepsy surgery. But what if seizure origins could be mapped without having to actually observe a seizure?

Joseph Madsen, MD, director of Epilepsy Surgery at Boston Children’s Hospital, and Eun-Hyoung Park, PhD, a computational biophysicist in the Department of Neurosurgery, think they have a way to do that — with an algorithm originally used for economic forecasting. 

Read Full Story | Leave a Comment

Marching because science saves lives

Timelapse video: Boston’s March for Science in 120 seconds (Credit: Kat J. McAlpine)

One definition of science: “The field of study concerned with discovering and describing the world around us by observing and experimenting.”

Another, simpler definition: “The state of knowing.”

At Saturday’s March for Science in Boston, people brandished signs defending facts, data, even the act of thinking. But with the National Institutes of Health budget under attack — a potential 18 percent cut — the most compelling signs were those that stated: “Science saves lives.”

Read Full Story | Leave a Comment

Angiogenesis: The slow growth of a science

angiogenesis

Sometimes a scientific idea takes a long time to make its way forward. Angiogenesis is a case in point. As surgeon-in-chief at Boston Children’s Hospital, Judah Folkman, MD, noted that malignant tumors often had a bloody appearance. In The New England Journal of Medicine in 1971, he hypothesized that tumors cannot grow beyond a certain size without a dedicated blood supply, and that “successful” tumors secrete an unknown substance that encourages blood vessel growth, or angiogenesis.

If angiogenesis could be blocked, he argued, tumors might not grow or spread. Rather than waging a toxic chemical and radiation battle with a tumor, one could starve it into submission by shutting down its blood supply.

The idea was roundly criticized.

Read Full Story | Leave a Comment