Author: Nancy Fliesler

Can virtual reality headsets save vision in people with lazy eye?

Luminopia amblyopia virtual reality
IDHA’s Matt Murphy tries out Luminopia’s VR headset with Dean Travers (photo: Greb Weintraub)

Three to five percent of the population has amblyopia, a.k.a. lazy eye, in which a healthy eye never “learns” to see because isn’t used. This usually happens because of a focusing problem or subtle misalignment of that eye. The brain learns to ignore input from that eye, and unless this is noticed early, it weakens and can slowly go blind.

“When I can diagnose amblyopia early enough, I can treat it with an eye patch or eye drops to block the ‘good’ eye,” says David Hunter, MD, PhD, chief of ophthalmology at Boston Children’s Hospital. “This gives the eye with amblyopia time to catch up.”

Unfortunately, eye patching doesn’t work well at older ages, and kids hate the socially stigmatizing patches, which often need to be worn for more than a year. As Dean Travers, cofounder of Luminopia, put it at Boston Children’s Hospital’s Innovators’ Showcase last week, “Being a pirate isn’t cool for very long.”

Read Full Story | Leave a Comment

A 30-minute screening test for dyslexia?

dyslexia screening test
A dyslexia screening app in development could flag children at risk as early as age 4, when interventions are most effective.

Ten to 12 percent of school-aged children have dyslexia. It’s typically diagnosed in second or third grade, only after a child has struggled unsuccessfully at reading. As Nadine Gaab, PhD, of Boston Children’s Hospital puts it, diagnosis is primarily based upon a “wait-to-fail-approach.” And that comes along with considerable psychological damage and stigma.

“Late diagnosis of dyslexia very often leads to low self-esteem, depression and antisocial behavior,” she says. A much better time to look for early signs of dyslexia would be kindergarten or first grade. With early intervention, many children can attain an average reading ability.

Read Full Story | Leave a Comment

Science Seen: Tackling S. aureus by eavesdropping on infections

S. aureus vaccine messenger RNA transcriptome
This messenger RNA ‘heat map,’ generated from 50 patient samples, shows potential target proteins for a more effective S. aureus vaccine. The color scale indicates the magnitude of the transcription level, with red highest.

Staphylococcus aureus causes 11,000 deaths annually in the U.S. alone and is frequently antibiotic-resistant. It’s a leading cause of pneumonia, bloodstream infections, bone/joint infections and surgical site infections and the #1 cause of skin and soft tissue infections. Efforts to develop an S. aureus vaccine have so far failed: the vaccines don’t seem to be capturing the right ingredients to make people immune.

Kristin Moffitt, MD, in Boston Children’s Hospital’s Division of Infectious Diseases, took a step back and asked: “What proteins does S. aureus need to make to establish infection?” The answer, she reasoned, could point to new antigens to include in a vaccine.

The above image shows an early result from Moffitt’s investigation. It’s a “heat map” of the messenger RNA signature — a snapshot of the proteins S. aureus is potentially up-regulating during infection.

Read Full Story | Leave a Comment

2017 Innovators’ Showcase spotlights healthcare decision support

2017 Innovator's Showcase Boston Children's Hospital

Healthcare innovations will be on display next week — April 12 — at Boston Children’s Hospital’s Innovation & Digital Health Accelerator’s annual showcase. The event, from 3:30 to 5:30 p.m., will be kicked off by a discussion on clinical decision support with Doug Perrin, a bioengineer/computer scientist in Cardiac Surgery at Boston Children’s and Garry Steil, who is developing a glucose control technology for diabetes patients at the hospital.

Exhibits, demos and mingling will take place in the Patient Entertainment Center off the main hospital lobby (300 Longwood Avenue, Boston).

Among the roughly 20 apps, ventures and technologies on display:

Read Full Story | Leave a Comment

Brain ‘connectome’ on EEG could help diagnose attentional disorders

EEG connectome could diagnose attentional disorders ADHD
EEGs shouldn’t just be for epilepsy, say these researchers.

Attention deficit disorder (ADD), with or without hyperactivity, affects up to 5 percent of the population, according to the DSM-5. It can be difficult to diagnose behaviorally, and coexisting conditions like autism spectrum disorder or mood disorders can mask it.

While recent MRI studies have indicated differences in the brains of people with ADD, the differences are too subtle and MRI too expensive to be a practical diagnostic measure. But new research suggests a role for an everyday, relatively cheap alternative: electroencephalography (EEG).

Read Full Story | Leave a Comment

Effective vaccination of newborns: Getting closer to the dream

 

newborn vaccines global health

In many parts of the world, babies have just one chance to be vaccinated: when they’re born. Unfortunately, newborns’ young immune systems don’t respond well to most vaccines. That’s why, in the U.S., most immunizations start at two months of age.

Currently, only BCG, polio vaccine and hepatitis B vaccines work in newborns, and the last two require multiple doses. But new research raises the possibility of one-shot vaccinations at birth — with huge implications for reducing infant mortality.

Read Full Story | Leave a Comment

News Note: Steroids could be counter-productive in severe asthma

severe asthma
Nine years old kid with allergic asthma, inhaling his medication through spacer while looking at with his wide opened eyes perhaps he is getting energy boost

Some 10 to 15 percent of people with asthma have severe disease that medications can’t control. A deep-dive multicenter study finds differences in these patients’ immune systems that may explain why increased dosages of corticosteroids don’t help — and could lead to steroids doing more harm than good. Findings appear online this week in Science Immunology.

Read Full Story | Leave a Comment

Science Seen: Disrupted developmental genes cause ‘split brain’

split brain syndrome
The two halves of the brain on the right, from a patient with the DCC mutation, are almost completely disconnected. The mutation — first recognized in worms — prevents axons (nerve fibers) from crossing the midline of the brain by interfering with guidance cues. Image courtesy Ellen Grant, MD, director, Fetal-Neonatal Neuroimaging and Developmental Science Center.

Tim Yu, MD, PhD, a neurologist and genomics researcher at Boston Children’s Hospital, was studying autism genes when he saw something on a list that rang a bell. It was a mutation that completely knocked out the so-called Deleted in Colorectal Carcinoma gene (DCC), originally identified in cancer patients. The mutation wasn’t in a patient with autism, but in a control group of patients with brain malformations he’d been studying in the lab of Chris Walsh, MD, PhD.

Yu’s mind went back more than 20 years. As a graduate student at University of California, San Francisco, he’d conducted research in roundworms, studying genetic mutations that made the worms, which normally move in smooth S-shaped undulations, move awkwardly and erratically.

Read Full Story | Leave a Comment

Gene therapy: The promise, the reality, the future

gene therapy
(Graphs courtesy Alexandra Biffi, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center)

Gene therapy stalled in the early 2000s as adverse effects came to light in European trials (leukemias triggered by the gene delivery vector) and following the 1999 death of U.S. patient Jesse Gelsinger. But after 30 years of development, and with the advent of safer vectors, gene therapy is becoming a clinical reality. It falls into two main categories:

  • In vivo: Direct injection of the gene therapy vector, carrying the desired gene, into the bloodstream or target organ.
  • Ex vivo: Removal of a patient’s cells, treating the cells with gene therapy, and reinfusing them back into the patient, as in hematopoietic stem cell transplant and CAR T-cell therapy.

A recent panel at Boston Children’s Hospital, hosted by the hospital’s Technology and Innovation Development Office (TIDO), explored where gene therapy is and where it’s going. Here were the key takeaways:

Read Full Story | Leave a Comment

With no time to lose, parents drive CMT4J gene therapy forward

CMT4J
Talia Duff’s disorder, CMT4J, is a rare form of Charcot-Marie-Tooth. It has been modeled in mice that will soon undergo a test of gene therapy, largely through her parents’ behind-the-scenes work.

In honor of Rare Disease Day (Feb. 28), we salute “citizen scientists” Jocelyn and John Duff.

When Talia Duff was born, her parents realized life would be different, but still joyful. They were quickly adopted by the Down syndrome parent community and fell in love with Talia and her bright smile.

But when Talia was about four, it was clear she had a true problem. She started losing strength in her arms and legs. When she got sick, which was often, the weakness seemed to accelerate.

Talia was initially diagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), an autoimmune disease in which the body attacks its own nerve fibers. Treated with IV immunoglobulin infusions to curb the inflammation, she seemed to grow stronger — but only for a time. Adding prednisone, a steroid, seemed to help. But it also caused bone loss, and Talia began having spine fractures.

“We tried a lot of different things, but she never got 100 percent better,” says Regina Laine, NP, who has been following Talia in Boston Children’s Hospital’s Neuromuscular Center the past several years, together with Basil Darras, MD.That’s when we decided to readdress the possibility that it was genetic.”

Read Full Story | Leave a Comment