Vectorconsulted its many informants to find out which way the wind will blow in 2018. Here are their predictions for what to expect in genetics, stem cell research, immunology and more.
GENETICS
Gene-based therapies mature
We will continue to see successes in 2018 reflecting the maturation of gene therapy as a viable, generalizable platform for curing many rare diseases. Also, we will see exciting new applications of other maturing platforms, like CRISPR/Cas9 gene editing and oligonucleotide therapies for neurologic diseases, building on the success of nusinersen for spinal muscular atrophy. …
When rare diseases are taken together, they’re not all that rare. Their underlying genes provide biological insights that drive therapeutic advances and often shed light on more common disorders. Thanks to advances in genomics and bioinformatics, growing interest from pharma and a burgeoning citizen science movement, rare disease is poised to rock biomedicine. This Storify recaps a Twitter chat hosted by the NIH (#NIHchat) ahead of Rare Disease Day on February 29. People shared statistics, great examples of rare disease science, directories of diseases/disease organizations and tools for patients, clinicians and researchers. …
The 3-D structure of the Fas death receptor’s transmembrane region, consisting of three tightly packed helices shown here from three angles. Cancer-causing mutations deform this structure, preventing “time to die” signals from passing through. (Fu Q; et al. Molecular Cell, Feb. 5, 2016).
Programmed cell death, or apoptosis, helps keep us healthy by ensuring that excess or potentially dangerous cells self-destruct. One way cells know it’s time to die is through signals received by so-called death receptors that stud cells’ surfaces. When these signals go awry, the result can be cancer (uncontrolled cell growth) or autoimmune disease (cells self-destructing too readily).
Researchers at Harvard Medical School (HMS) and the Program in Cellular and Molecular Medicine at Boston Children’s Hospital deconstructed a death receptor called Fas to learn more about its workings, using nuclear magnetic resonance (NMR) spectroscopy to reveal its structure.
They found that for immune cells to hear the “time to die” signal, a portion of Fas called the transmembrane region must coil into an intricate three-part formation, allowing the signal to pass into the cell. The NMR imaging also revealed that the amino acid proline is critical for the formation’s stability. Cancer-causing mutations in the transmembrane region (one of them affecting proline itself) deformed this delicate structure and prevented signals from passing through.
This better understanding of the Fas death receptor, published last week in Molecular Cell, could lead to new approaches that bypass Fas to encourage apoptosis in cancer or, conversely, inhibit Fas in autoimmune disease.
What does 2016 have in store in the realm of science and clinical innovation? Vector asked clinical, digital and business leaders from around Boston Children’s Hospital to offer their forecasts. …
It’s been an exciting year for pediatric health care. As Thanksgiving draws near, Vector is taking a pause to acknowledge the inspiring people and ideas that are helping set the table for a better future.
What are we thankful for?
The growing cadre of citizen scientists — passionate parents pushing for answers for their kids, helping to move rare disease research forward through their own investigations and initiatives. They’re keeping academic researchers honest and on top of their game, and, in many cases, helping to fund them.
The growing inclination among clinicians to say, “the way things are isn’t good enough,” and then push the boundaries of what’s possible to improve sick children’s lives. …
The 20th century saw great strides in curing childhood cancer, thanks primarily to the discovery that broadly toxic chemotherapy agents could kill malignant cells. Once virtually incurable, pediatric cancer now has an overall long-term survival rate topping 80 percent.
Funding drives biomedical research, and research drives treatment innovation. Access to funds, particularly National Institute of Health (NIH) awards, is critical to move research forward. The 21st Century Cures Act, which passed the U.S. House on July 10, could give the NIH $8.75 billion more in new grants to disperse over the next five years, the largest increase since the Recovery Act of 2009.
How would those funds be used? Can research find a better way to treat patients? Prevent disease? Disseminate advances in medicine?
In 2014, Boston Children’s led the U.S. in NIH awards. Here’s a look at how a few research teams are leveraging NIH funding to improve care for both children and adults.
Some great inventions were on view this week at the second annual Boston Children’s Hospital Innovators Showcase. Hosted by the hospital’s Innovation Acceleration Program and Technology & Innovation Development Office, the event featured everything from virtual reality goggles with gesture control to biomedical technologies. Below are a few new projects that caught Vector’s eye (expect to hear more about them in the coming months), a kid-friendly interview about the SimLab and list of inventions kids themselves would like to see. (Photos by Katherine Cohen except as noted) …
From a series on researchers and innovators at Boston Children’s Hospital.
Kaifeng Liu, MD, a research fellow at Boston Children’s Hospital, takes his inspiration from ants.
“We’re often amazed by the power of large animals—whales, eagles, lions and tigers,” he says. “But these animals are genetically born with the strength to overpower other animals. Ants are small and hardworking. They work inch by inch and create a teamwork culture. Most of us are like ants. We have an average level of talent and are not able to perform like a lion. But we can work like ants and create beautiful things by working hard as part of a team—day by day, little by little.”
Liu has taken this inch-by-inch approach in a radical redesign of the conventional suturing needle: “I started to play with the surgical needle in graduate school in 1986.”
Nearly three decades later, Liu has devised an extremely short magnetic needle that transforms the current method of suturing—stitching with a needle and thread—that has been used for thousands of years. …
From a series on researchers and innovators at Boston Children’s Hospital
McCabe (far right) and the Hacking Pediatrics team
Margaret McCabe, PhD, director for nursing research in the medicine patient services at Boston Children’s Hospital, is an unlikely hacker. A former techno-phobe and chronically fatigued mother of four, McCabe didn’t think she had time for another project.
Some opportunities, however, are too good to resist. That was the case when McCabe, who thrives on interacting with people who think outside of the box, started brainstorming with colleagues about Hacking Pediatrics.
She signed as a co-founder of the group, an organization of self-described geeks from Boston Children’s and MIT’s H@cking Medicine committed to hacking the status quo in pediatric health care. “It’s the attraction to innovation,” she confesses.
McCabe describes the lure of hacking and the role of nurses in innovation. …