A self-driving robotic catheter, inserted at the base of the heart, arrives at a leaky valve. ILLUSTRATION: RANDAL MCKENZIE
Surgeons have used robots operated by joysticks for more than a decade, and teams have shown that tiny robots can be steered through the body by external forces such as magnetism. Now, a paper in Science Robotics describes a robotic catheter that can navigate autonomously — the surgical equivalent of a self-driving car.
Bioengineers at Boston Children’s Hospital demonstrated a robotic catheter that found its way along the walls of a beating, blood-filled heart to a leaky valve in an animal model, without a surgeon’s involvement.
Rusty Jennings, MD, and Michael Manfredi, MD (CREDIT: MICHAEL GODERRE)
A child’s esophagus can
become damaged through physical trauma or ingestion of toxic chemicals or
foreign objects — such as oven and drain cleaners, lye, laundry and dishwasher
detergents and batteries. Depending on the substance and the amount ingested,
children can develop esophageal strictures (scar tissue that narrows the esophagus) or esophageal perforations (holes in the
esophagus). These problems can also be complications of surgery for esophageal atresia, in which a baby is born without part of the esophagus.
Children with esophageal perforations have traditionally been treated with long courses of antibiotics and not eating by mouth. More recently, perforations have been treated with stents, and strictures with a combination of dilation and stenting. But stenting, while it can be effective, requires up to eight weeks of therapy and can have complications such as pain, retching and local pressure necrosis, a type of ulcer that may worsen perforation. Such concerns have led researchers to investigate alternative treatments for perforation and strictures.
Combined expansion microscopy and lattice light-sheet microscopy allows for highly detailed images to be taken over large sections of the brain. (IMAGES COURTESY SRIGOKUL UPADHYAYULA, RUIXUAN GAO, AND SHOH ASANO)
Decades ago, discoveries about the brain’s intricate anatomy were made with careful dissection and drawings. Today, they’re made with super-resolution imaging and massive computing power capable of handling hundreds of terabytes of data.
In this week’s Science, a team out of the Massachusetts Institute of Technology (MIT), the Janelia Research Campus of the Howard Hughes Medical Institute (HHMI), Harvard Medical School (HMS) and Boston Children’s Hospital, describes a technique capable of imaging whole brains at exquisitely high resolution, allowing scientists to distinguish tiny sub-cellular structures. …
Every year, nearly 400,000 children worldwide develop hydrocephalus, in which excess fluid accumulates in the brain. Many of these children have shunts placed to allow this fluid to drain. Antibiotic-impregnated shunts are widely championed as the best choice for treatment, but a new study calls their necessity into question. …
Could cell-signaling proteins called cytokines be modulated to tame inflammation? IMAGE: ADOBE STOCK
Cytokines are small proteins produced by the body’s cells that have a big impact on our immune system. Researchers at Boston Children’s Hospital believe that modulating their presence in our bodies could be the key to improving outcomes in life-threatening cases of trauma, hemorrhage and many other conditions including sepsis, which alone impacts nearly one million Americans each year.
The reason? Cells essentially use cytokines to talk to one another. In response to their surroundings, cells release different types of cytokines that encourage inflammatory or anti-inflammatory effects on the body. Infection or trauma causes cells to pump out more cytokines that produce inflammation. Altogether, an escalating chorus of cytokines can sometimes tip a person’s body into overwhelming inflammation that can turn fatal, which is what happens during sepsis.
But what if scientists could remove the problematic cytokines to bring the choir into perfect tune, allowing the immune system to respond with just the right amount of inflammation for healing? …
(Luke MacQueen and Michael Rosnach/Harvard University)
While engineered heart tissues can replicate muscle contraction and electrical activity in a dish, many aspects of heart disease can only adequately be captured in 3D. In a report published online yesterday by Nature Biomedical Engineering, researchers describe a scale model of a heart ventricle, built to replicate the chamber’s architecture, physiology and contractions. Cardiac researchers at Boston Children’s Hospital think it could help them find treatments for congenital heart diseases. …
Tissue expanders — small balloons that can be filled with saline solution or other fluids to grow skin — have long been used in plastic surgery, most commonly breast reconstruction. They’re based on the simple idea that the surrounding skin will stretch as the device expands over time. That extra skin can then help repair injuries or congenital anomalies or accommodate implants.
Now, a novel approach extends tissue expansion to blood vessels. It is transforming the way that surgeons treat a rare but serious condition called midaortic syndrome, report Heung Bae Kim, MD, Khashayar Vakili, MD and their colleagues at Boston Children’s Hospital.
Midaortic syndrome occurs when the middle section of the aorta is narrowed and typically affects children and young adults. It can cause severe hypertension and can be life-threatening if left untreated. The surgical approach to this condition would be to replace the damaged portion of the aorta with nearby healthy blood vessels. However, this usually isn’t possible because these vessels tend to be too short to adequately fill in. …
Precision medicine is often equated with high-tech, exquisitely targeted, million-dollar drug treatments. But at Precision Medicine 2018, hosted by Harvard Medical School’s Department of Biomedical Informatics (DBMI) this week, many of the speakers and panelists were more concerned about improving health for everyone and making better use of what we already have: data.
“We’re not going to make major changes in 21st century medicine without embracing data-driven approaches,” said HMS dean George Q. Daley in his opening remarks. …
A mock-up of the ExSpiron monitoring a toddler’s breathing
Children can be at risk for compromised breathing after surgery or from conditions like asthma, congestive heart failure or sleep apnea. Opioid therapy and sedation for medical procedures can also depress breathing. Unless a child is sick enough to have a breathing tube, respiratory problems can be difficult to detect early. Yet early detection can mean the difference between life and death.
“There is currently no real-time objective measure,” says Viviane Nasr, MD, an anesthesiologist with Boston Children’s Hospital’s Division of Cardiac Anesthesia. “Instead, respiratory assessment relies on oximetry data, a late indicator of respiratory decline, and on subjective clinical assessment.”
A new device, recently cleared by the FDA for children 1 year and older in medical settings, provides an easy, noninvasive way to tell how much air the lungs are receiving in real time. It can signal problems as much as 15-30 minutes before standard pulse oximetry picks up low blood oxygenation, according to one study. …
A new microscope allows us to see how cells behave in 3D and real time inside living organisms.
Astronomers developed a “guide star” adaptive optics technique to obtain the most crystal-clear and precise telescopic images of distant galaxies, stars and planets. Now a team of scientists, led by Nobel laureate Eric Betzig, PhD, are borrowing the very same trick. They’ve combined it with lattice light-sheet to create a new microscope that’s able to capture real-time, incredibly detailed and accurate images, along with three-dimensional videos of biology on the cellular and sub-cellular level.
The work — a collaboration between researchers at Howard Hughes Medical Institute, Boston Children’s Hospital and Harvard Medical School — is detailed in a new paper just published in Science.
“Every time we’ve done an experiment with this microscope, we’ve observed something novel — and generated new ideas and hypotheses to test,” Kirchhausen said in a news story by HMS. “It can be used to study almost any problem in a biological system or organism I can think of.” …