Stories about: Market trends

In search of young medical geneticists

Nina Gold, MD, is Chief Resident of Medical Genetics at Boston Children’s Hospital.

During a quiet stretch of my final year in medical school, I read Sir Arthur Conan Doyle’s Sherlock Holmes stories. A master observer, the detective found secrets in wrinkles of clothes, tints of hair, scents of perfume, never satisfied until the truth was revealed. Sherlock was, simply, an expert diagnostician.

In the spring of 2014, I became the first student in my medical school to pursue residency training in a combined pediatrics and medical genetics program. Like Sherlock, pediatric geneticists are stalwart investigators. They are often called into a case long after other consultants and tasked with bringing a family’s diagnostic odyssey to an end. But unlike the emotionally obtuse fictional detective, geneticists must describe their findings with empathy and clarity to concerned families after they solve a mystery.

Read Full Story | Leave a Comment

If I knew then what I know now: The need for infrastructure to enable precision medicine

precision medicine - closing the infrastructure loop
For precision medicine to happen, we need to be able to close the loop when genetic discoveries are made.

Catherine Brownstein, MPH, PhD, is scientific director of The Manton Center for Orphan Disease Research at Boston Children’s Hospital. Kelsey Graber, MSc, is a research assistant in the Developmental Neuropsychiatry Program. Joseph Gonzalez-Heydrich, MD, is director of the Developmental Neuropsychiatry Program at Boston Children’s Hospital.

Research implicating rare genetic variants in medical and psychiatric diseases is quickly accumulating. This expanding knowledge should be taken into account when making treatment decisions for patients carrying these variants — as well as other family members — even when that knowledge comes after the patient is tested. But all too often, medical institutions are unable to go back and update the information given to families. We need a better infrastructure to enable precision medicine.

This problem recently surfaced in our psychiatry practice. It came to our attention because of a young boy with mild coordination delays and learning disabilities. At age 6, he started experiencing daily hallucinations such as voices telling him to kill his classmates.

Read Full Story | Leave a Comment

Robot-enhanced neurosurgery for nimbler seizure mapping

implanting electrodes for seizure monitoring, with robotic assistance
Scellig Stone and Joseph Madsen in surgery with the robot.

Head shaved, a little boy rests on the operating table, deep under anesthesia. His parents have brought him to Boston Children’s Hospital in hopes of determining the cause of his seizures. Now, neurosurgeons Scellig Stone, MD, PhD, Joseph Madsen, MD, and their colleagues in the Epilepsy Center are performing a procedure designed to monitor seizure activity in the 3-year-old’s brain.

But as the team members crowd around the table, they’re not alone. With the push of a button, a large robotic arm rotates and lowers right next to the boy’s head, helping the physicians pinpoint the precise location to drill. “This is a real game-changer,” murmurs one of the clinicians observing the surgery. “It’s going to transform the way we practice.”

Read Full Story | Leave a Comment

Building precision medicine: Power to the patients

Tools to build precision medicinePrecision medicine involves the development and application of targeted therapeutics based on patients’ genomes, lifestyles and environments. The recent conference on precision medicine at Harvard Medical School highlighted a few challenges in scaling up this process.

To help further precision medicine, the Obama administration and NIH launched the All of Us program, registrations for which are slated to start later this year. Its aim is to collect health data from one million Americans.

But the conference also highlighted several tools that patients can use proactively to collect, share and analyze their own data and use it to improve their own health — and contribute to precision medicine as citizen scientists.

Read Full Story | Leave a Comment

Three challenges precision medicine faces before it can scale up

Different aspects of precision medicine therapyDoctors, scientists, consumers, entrepreneurs and others came together recently for the Precision Medicine 2017 symposium at Harvard Medical School, now in its third year. This year’s theme was “breakaway business models.” What are challenges in developing targeted treatments based on clinical and genetic data, and how do we overcome them?

Read Full Story | Leave a Comment

Under the hood of healthcare innovation: Jared Hawkins and the digital phenotype

Jared Hawkins Boston Children's Hospital

What does it take to change healthcare for the better? In the second of a two-part series on digital health innovators at Boston Children’s Hospital, we profile Jared Hawkins, MMSc, PhD. Like Gajen Sunthara, MSc, featured in part one, Hawkins was named among MedTech Boston’s 40 Under 40 Healthcare Innovators for 2017.

Jared Hawkins, director of informatics at Boston Children’s Innovation and Digital Health Accelerator (IDHA), brings a formidable skill set to his work. With a PhD in Immunology from Tufts University School of Medicine and an MMSc in Biomedical Informatics from Harvard Medical School, his background combines biomedical research (immunology, virology, oncology, genomics) with data science, visualization, computational modeling and software development.

His current work spans an equally diverse range of topics, touching on population and public health, patient experience, decision support and pharmacogenomics. A faculty member in the Computational Health Informatics Program, Hawkins is wired into the digital health ecosystem. He serves as a scientific advisor and co-founder of Raiing Medical (home temperature and fertility tracking) and is the head of engineering and co-founder of Circulation (non-emergency medical transportation via Uber).

Read Full Story | Leave a Comment

Webchat to highlight what’s new in pediatric brain tumors

pediatric brain tumors, child MRI

Last September, the National Center for Health Statistics reported that brain tumors have overtaken the much more common leukemia as the leading cause of death from pediatric cancer. Although progress has been made and the promise of more progress is on the horizon, the cure rate for childhood brain tumors lags behind a number of other pediatric cancers.

As pediatric neuro-oncologist Peter Manley, MD, of Dana-Farber/Boston Children’s Cancer and Blood Disorders Center told Live Science, new research on cancer genomics “is so impressive that my feeling is that we will continue to see a decline in deaths.”

To mark Brain Tumor Awareness Month, Mark Kieran, MD, PhD, clinical director of the Brain Tumor Center at Dana-Farber/Boston Children’s, will host a webchat on Monday, May 22 (3:30 p.m. ET). The live chat will highlight the latest research and treatments for pediatric brain tumors. Here’s a look back at some recent developments:

Read Full Story | Leave a Comment

Protein science 2.0: Amping up antibodies

Institute for Protein Innovation antibody libraries
The Institute for Protein Innovation, launching next week with $15 million in grants and philanthropy, aims to develop comprehensive, open-source libraries of antibodies targeting human proteins.

It began with the proteins. Before Watson and Crick unraveled DNA’s double helix in the 1950s, biochemists snipped, ground and pulverized animal tissues to extract and study proteins, the workhorses of the body.

Then, in 1990, the Human Genome Project launched. It promised to uncover the underpinnings of all human biology and the keys to treating disease. Funding for DNA and RNA tools and studies skyrocketed. Meanwhile, protein science fell behind.

While genomics unveiled a wealth of information, including the identity of genes that lead to disease when mutated, researchers still do not fully understand what all the genes really do and how mutations change their function and cause disease.

Now proteins are promising to provide the missing link.

Read Full Story | Leave a Comment

Lessons from the data: Applying machine learning for clinical decision support

machine learning clinical decision support

Mauricio Santillana, PhD, faculty member in the Computational Health Informatics Program at Boston Children’s Hospital, had an idea as he witnessed the volume of continuous real-time data generated in the pediatric intensive care unit (PICU). He realized that tapping the data on patients’ ever-changing vital signs, with the help of machine-learning algorithms, could support clinical decision-making and predict (and help head off) up-coming health issues.

He started a dialogue with the hospital’s Innovation & Digital Health Accelerator, and now collaborates closely with clinicians in the PICU to create machine-learning algorithms that can help them provide the highest level of care.

“It’s fairly recent that clinicians realized people with backgrounds in math and statistics can be very helpful in a clinical context,” says Santillana

Read Full Story | Leave a Comment

Gene therapy: The promise, the reality, the future

gene therapy
(Graphs courtesy Alexandra Biffi, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center)

Gene therapy stalled in the early 2000s as adverse effects came to light in European trials (leukemias triggered by the gene delivery vector) and following the 1999 death of U.S. patient Jesse Gelsinger. But after 30 years of development, and with the advent of safer vectors, gene therapy is becoming a clinical reality. It falls into two main categories:

  • In vivo: Direct injection of the gene therapy vector, carrying the desired gene, into the bloodstream or target organ.
  • Ex vivo: Removal of a patient’s cells, treating the cells with gene therapy, and reinfusing them back into the patient, as in hematopoietic stem cell transplant and CAR T-cell therapy.

A recent panel at Boston Children’s Hospital, hosted by the hospital’s Technology and Innovation Development Office (TIDO), explored where gene therapy is and where it’s going. Here were the key takeaways:

Read Full Story | Leave a Comment