Stories about: Pediatrics

Snaps from the lab: Developing better autism interventions

How can we better understand and support people with autism? And how can we tell if an intervention is working? Those are among the questions being asked in the Faja Laboratory, where Susan Faja, PhD, and her team study social and cognitive development in children, teens and young adults with autism spectrum disorder (ASD), using a variety of tools.

Originally on Snapchat, this video walks through some of these studies, including:

  • Individual Development of Executive Attention (IDEA), looking at executive functioning in 2- to 6-year-olds with autism, developmental disability or no developmental concerns. Executive functions include the ability to plan, manage complex or conflicting information, problem-solve and shift between different rules in different situations. By observing young children while they play hands-on tabletop games, Faja’s team is trying to find out: do kids with autism have problems with executive functioning early on, or do problems emerge later as a result of autism itself? The study is an extension of the ongoing GAMES project for 7- to 11-year-olds, in which children play video games designed to boost their executive functions. Faja is also looking to teach parents to use the games with their children at home.
  • Autism Biomarkers Consortium for Clinical Trials (ABC-CT), a multi-institution study that’s seeking objective, reliable measurements of social function and communication in people with autism. “Language, IQ and social assessments are not so sensitive when you’re looking for changes in autism symptoms, especially subtle ones,” says Faja. So her team is using physiologic measures — like EEGs to measure brain activity and eye-tracking technology to measure visual attention — and correlating them with behavioral and cognitive assessments. The ultimate goal is to validate a set of tools that can be used in clinical trials — and in day-to-day practice — to objectively measure and predict how children with ASD will respond to treatment.​
  • Competence in Romance and Understanding Sexual Health (CRUSH), a new study, will enroll young adults with autism and their parents. The goal is to develop curriculum around dating and sexual health that meets the needs of the ASD population, starting with interviews to determine their needs and interests. No evidence-based curricula currently exist for adults on the spectrum, says Faja.

Learn more about current and future projects in the Faja Lab.

Read Full Story | Leave a Comment

Could poop transplants treat peanut allergy? A clinical trial begins

FMT peanut allergy

Increasing evidence supports the idea that the bacteria living in our intestines early in life help shape our immune systems. Factors like cesarean birth, early antibiotics, having pets, number of siblings and formula feeding (rather than breastfeeding) may affect our microbial makeup, or microbiota, and may also affect our likelihood of developing allergies.

Could giving an allergic person the microbiota of a non-allergic person prevent allergic reactions? In a new clinical trial, a team led by Rima Rachid, MD, of Boston Children’s Division of Allergy and Immunology, is testing this idea in adults with severe peanut allergies. The microbiota will be delivered through fecal transplants — in the form of frozen, encapsulated poop pills.

Read Full Story | Leave a Comment

Coordinated care for children on respiratory support saves money

CAPE program staff serve children who require home respiratory support.
Sofia Wylie, then age 2, is enrolled in the CAPE program and was part of the study. (Courtesy Natalia Wylie)

Children with high-risk, complex conditions — such as those who need ventilators to breathe — often receive disjointed care, scattered among many providers. This leads to emergency room visits and hospitalizations that could have been avoided. And once in the hospital, many children remain longer than they should for lack of good home care.

At home, families face daunting challenges. They must learn to use and maintain their children’s medical equipment and handle emergencies. They often have little or no access to home nursing services. Private insurance rarely covers home nursing for more than a limited number of hours, and Medicaid pays too little to attract qualified nurses. Many parents end up quitting their jobs to provide care.

Read Full Story | Leave a Comment

Science Seen: Imaging early auditory brain development

Auditory brain development - Heschl’s gyrus at 28 and 40 weeks
Copyright © 2018 Monson et al.

Babies can hear and respond to sounds, including language, before birth. In fact, research shows that babies learn to recognize words in the womb. Now, an advanced MRI technique called diffusion tensor imaging is providing a fine-tuned view of when different brain areas mature, including the areas that process sound. And the findings suggest that babies born prematurely may have disruptions in auditory brain development and in speech.

Investigators at Boston Children’s Hospital, Brigham and Women’s Hospital, Washington University School of Medicine in St. Louis and University College London analyzed advanced MRI brain images from 90 preterm infants and 15 infants born at full term (40 weeks). Fifty-six of the preterm infants were imaged at multiple time points. As shown above, the team focused on a particular fold in the brain called Heschl’s gyrus (HG). This area contains the primary auditory cortex, the first part of the auditory cortex to receive sound signals, and the non-primary auditory cortex, which plays a higher-level role in processing those stimuli.

As seen in these sample images, the primary cortex has largely matured at 28 weeks’ postmenstrual age (PMA), whereas the non-primary auditory cortex has had a surge in development between 28 and 40 weeks’ PMA. Both regions appeared underdeveloped in the premature infants as compared with the infants born at term.

The study further found that disturbed maturation of the non-primary cortex was associated with poorer expressive language ability at age 2. The team suggests that this area may be especially vulnerable to disruption in a premature birth because it is undergoing such rapid change.

The study was published in eNeuro, an open-access journal from the Society for Neuroscience. Jeffrey Neil, MD, PhD, of Boston Children’s Department of Neurology, was senior author on the paper. First author Brian Monson, PhD, is now at the University of Illinois at Urbana-Champaign. Read more in the university’s press release.

Read Full Story | Leave a Comment

Virtual reality tool lets kids voyage through their own bodies

HealthVoyager - stomach
Traditionally, doctors share the findings of invasive tests using printouts that are highly text-based and filled with medical jargon. Some may have static thumbnail illustrations, but all in all they’re not especially patient friendly.

Michael Docktor, MD, a pediatric gastroenterologist at Boston Children’s Hospital, believed that if kids could really “see” inside themselves, they would have a better understanding of their disease and be more engaged in their treatment.

He connected with Klick Health, a health marketing and commercialization agency that develops digital solutions. Together, they created an entertaining “virtual reality” educational experience. It allows the physician to easily recreate a patient’s actual endoscopic procedure, and, like the Magic School Bus, enables kids to virtually tour their own bodies.

Boston Children’s and Klick Health officially unveiled the iPhone-friendly VR tool, called HealthVoyagerTM, in New York today.

Read Full Story | Leave a Comment

News Note: Why is this eye cancer making headlines?

This illustrations shows a catheter is used during intra-arterial chemotherapy for retinoblastoma.
During intra-arterial chemotherapy for retinoblastoma, a catheter is placed into the common femoral artery and threaded through a child’s vasculature to access the blood vessel of the affected eye and deliver a concentrated dose of chemotherapy. Illustration: Dana-Farber/Boston Children’s.

Retinoblastoma is a rare cancer that originates in the retina, the tissue in the back of the eye that converts light into visual information that is interpreted by the brain.

One retinoblastoma symptom in particular is finding itself in the spotlight. With a rise in social media use in recent years, retinoblastoma has attracted media attention for being a type of cancer that can sometimes be detected through photographs. Across the internet, news stories like this one abound in which friends or relatives have alerted parents to the potential risk of eye cancer after noticing that a child’s pupil appears white instead of red — a symptom called leukocoria — on photos posted to social media.

Fortunately, with proper diagnosis and treatment, 95 percent of children diagnosed with retinoblastoma can be cured. What’s more, a catheter-based treatment approach is now sparing patients from some of the side effects that can be expected from more traditional therapies.

Read Full Story | Leave a Comment

Five devices for pediatrics get help in advancing to market

kids with pediatric devices playing doctor

Medical devices for children tend to have small markets, so development can lag up to a decade behind similar devices for adults. The Boston Pediatric Device Consortium (BPDC), formed through an FDA initiative, aims to change that math.

This month, the BPDC and the Innovation and Digital Health Accelerator at Boston Children’s Hospital announced five winners of a national pediatric device challenge. Each winner will receive a combination of up to $50,000 in funding per grant award and/or in-kind support from leading medical device strategic partners, including Boston Scientific, CryoLife, Edwards Lifesciences, Health Advances, Johnson & Johnson Innovation, Medtronic, Smithwise, Ximedica and the Boston Children’s Simulator Program. These organizations will provide mentorship, product manufacturing and design services, simulation testing, business plan development, partnering opportunities and more.

“We have a major unmet need for pediatric medical devices that are specifically designed to address the demands of a growing, active child,” said BPDC leader Pedro del Nido, MD, chief of Cardiac Surgery at Boston Children’s, in a press release. “We are pleased to support these teams as they work toward accelerating their technologies from concept to market.”

The five Challenge winners are:

Read Full Story | Leave a Comment

Cancer researchers hit a bullseye with a new drug target for Ewing sarcoma

Cell staining shows the lethal efficacy of CDK+PARP inhibitors against Ewing sarcoma
Fluorescent staining shows how PARP and CDK12 inhibitors combine to deal a lethal blow to Ewing sarcoma. In the top row, green represents locations of DNA damage incurred by Ewing sarcoma cells. In the bottom row, red represents DNA repair activity. Together, PARP and CDK12 inhibitors lead to Ewing sarcoma cell death.

Screening a class of recently-developed drug compounds — so-called “CDK inhibitors” capable of blocking CDK7/12/13 proteins — against hundreds of different human cancer cell lines, researchers at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center have found that CDK12 inhibitors pack a particularly lethal punch to Ewing sarcoma, a rare cancer typically affecting children and young adults.

“No one has previously considered CDK12 inhibition as a way to combat Ewing sarcoma,” says Kimberly Stegmaier, MD, senior author of the new Cancer Cell paper that describes the findings.

In 2014, Nathaneal Gray, PhD, co-author on the new paper, and his team were the first to develop CDK inhibitors.

Some individuals were entirely cured of the disease

“Now, in mice, we’ve shown that Ewing sarcoma cells die if CDK12 is knocked out genetically or chemically inhibited,” Stegmaier says. What’s more, her team has discovered that CDK12 inhibition can be combined with another drug, called a PARP inhibitor, to double down on Ewing sarcoma cells.

The revelation that CDK12 inhibition can kill Ewing sarcoma cells brings a surge of hope to the field of pediatric oncology, which has long been challenged to find new drugs against childhood cancers.

Read Full Story | Leave a Comment

‘Pull’ from an implanted robot could help grow stunted organs

Surgeons at Boston Children’s Hospital have long sought a better solution for long-gap esophageal atresia, a rare birth defect in which part of the esophagus is missing. The current state-of-the art operation, called the Foker process, uses sutures anchored to children’s backs to gradually pull the unjoined ends of esophagus until they’re long enough to be stitched together. To keep the esophagus from tearing, children must be paralyzed in a medically induced coma, on mechanical ventilation, for one to four weeks. The lengthy ICU care means high costs, and the long period of immobilization can cause complications like bone fractures and blood clots.

Now, a Boston Children’s Hospital team has created an implantable robot that could lengthen the esophagus — and potentially other tubular organs like the intestine — while the child remains awake and mobile. As described today in Science Roboticsthe device is attached only to the tissue being lengthened, so wouldn’t impede a child’s movement.

Read Full Story | Leave a Comment

Science and medicine in 2018: What’s the forecast?

2018 predictions for biomedicine

Vector consulted its many informants to find out which way the wind will blow in 2018. Here are their predictions for what to expect in genetics, stem cell research, immunology and more.

GENETICS

Gene-based therapies mature

We will continue to see successes in 2018 reflecting the maturation of gene therapy as a viable, generalizable platform for curing many rare diseases. Also, we will see exciting new applications of other maturing platforms, like CRISPR/Cas9 gene editing and oligonucleotide therapies for neurologic diseases, building on the success of nusinersen for spinal muscular atrophy.

Read Full Story | Leave a Comment