Stories about: Pediatrics

Putting patients first in the translational research pipeline

During a follow-up visit, pediatric hematologist/oncologist Sung-Yun Pai, MD, hugs a patient who received gene therapy for X-linked severe combined immunodeficiency.
During a follow-up visit at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, pediatric hematologist/oncologist Sung-Yun Pai, MD, hugs a patient who received gene therapy for X-linked severe combined immunodeficiency.

This is part II of a two-part blog series recapping the 2018 BIO International Convention. Read part I: Forecasting the convergence of artificial intelligence and precision medicine.

The hope to improve people’s lives is what drives many members of industry and academia to bring new products and therapies to market. At the BIO International Convention last week in Boston, there was lots of discussion about how translational science intersects with patients’ needs and why the best therapeutic developmental pipelines are consistently putting patients first.

As a case in point, Mustafa Sahin, MD, PhD, of Boston Children’s discussed his work to improve testing and translation of new therapies for autism spectrum disorder (ASD). As a member of PACT (Preclinical Autism Consortium for Therapeutics) and director of Boston Children’s Translational Neuroscience Program, Sahin aims to bridge the gap between drug discovery and clinical translation.

“Our mission is to de-risk entry of new therapies in the ASD drug discovery and development space,” said Sahin, who is also a professor of neurology at Harvard Medical School.

One big challenge, says Sahin, is knowing how well — or how poorly — autism therapies are actually affecting people with ASD. Externally, ASD is recognized by its core symptoms of repetitive behaviors and social deficits.

Read Full Story | Leave a Comment

Mothers’ life experiences may affect their newborns’ telomeres — especially boys’

mother and newborn with telomeres

A new study adds to a growing body of evidence that mothers’ experiences affect their babies’ chromosomes. For the first time, it also shows a gender difference — with male babies more susceptible to maternal influence. And it even implicates experiences dating back to the mother’s own childhood.

The study, led by psychologist Michelle Bosquet Enlow, PhD, at Boston Children’s Hospital, may help explain why stress can have intergenerational effects within a family. It was published last month in the journal Psychoneuroendocrinology.

The researchers enrolled 151 socioeconomically diverse mothers and their infants, all born at Beth Israel Deaconess Medical Center in Boston. The mothers completed in-depth interviews during pregnancy. Cord blood was collected from the newborns so that their chromosomes could be examined — and in particular, the little caps at their tips known as telomeres.

Read Full Story | Leave a Comment

Solving the DIPG puzzle a single cell at a time

Image depicting the cellular makeup of DIPG/DMG tumors vs normal brain tissue development
Scientists have discovered that DIPG/DMG tumors are made up of H3K27M-mutated cell populations that contain many cells stuck in a stem-cell-like state, fueling tumor growth. Cells that can differentiate despite the H3K27M mutation could hold the key to unlocking a new therapy for DIPG/DMG.

For more than 15 years, pediatric neuro-oncologist Mariella Filbin, MD, PhD, has been on a scientific crusade to understand DIPG (diffuse intrinsic pontine glioma). She hopes to one day be able to cure a disease that has historically been thought of as an incurable type of childhood brain cancer.

“While I was in medical school, I met a young girl who was diagnosed with DIPG,” Filbin recalls. “When I heard that there was no treatment available, I couldn’t believe that was the case. It really made a huge impression on me and since then, I’ve dedicated all my research to fighting DIPG.”

Her mission brought her to Boston Children’s Hospital for her medical residency program and later, to do postdoctoral research at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center. Now, she’s starting her own research laboratory focused on DIPG — which has also been called diffuse midline glioma (DMG) in recent years — and continuing to treat children with brain tumors at the Dana-Farber/Boston Children’s pediatric brain tumor treatment center. She’s also a scientist affiliated with the Broad Institute Cancer Program.

This year, Filbin has made new impact in the field by leveraging the newest single-cell genetic sequencing technologies to analyze exactly how DIPG develops in the first place. Her latest research, published in Science, entailed profiling more than 3,300 individual brain cells from biopsies of six different patients.

Using what’s known as a single-cell RNA sequencing approach to interrogate the makeup of DIPG/DMG tumors, Filbin was able to identify a particularly problematic type of brain cell that acts forever young, constantly dividing over and over again in a manner similar to stem cells.

Read Full Story | Leave a Comment

Probing the brain’s earliest development, with a detour into rare childhood cancers

In early brain development there is an increase in ribosomes, contained in these nucleoli
Nucleoli, the structures in the cell nucleus that manufacture ribosomes, are enlarged in very early brain development, indicating an increase in ribosome production. Here, a 3D reconstruction of individual nucleoli. (Kevin Chau, Boston Children’s Hospital)

In our early days as embryos, before we had brains, we had a neural fold, bathed in amniotic fluid. Sometime in the early-to-mid first trimester, the fold closed to form a tube, capturing some of the fluid inside as cerebrospinal fluid. Only then did our brains begin to form.

In 2015, a team led by Maria Lehtinen, PhD, Kevin Chau, PhD and Hanno Steen, PhD, at Boston Children’s Hospital, showed that the profile of proteins in the fluid changes during this time. They further showed that these proteins “talk” to the neural stem cells that form the brain.

In new research just published in the online journal eLife, Lehtinen and Chau shed more light on this little-known early stage of brain development.

Read Full Story | Leave a Comment

Trial shows chemotherapy is helping kids live with pulmonary vein stenosis

Magnification of pulmonary vein tissue showing signs of pulmonary vein stenosis (plump abnormal cells stained dark magenta).
Magnification of pulmonary vein tissue showing signs of pulmonary vein stenosis (plump abnormal cells stained dark magenta). Credit: Boston Children’s Hospital Department of Pathology

Pulmonary vein stenosis (PVS) is a rare disease in which abnormal cells build up inside the veins responsible for carrying oxygen-rich blood from the lungs to the heart. It restricts blood flow through these vessels, eventually sealing them off entirely if left untreated. Typically affecting young children, the most severe form of PVS progresses very quickly and can cause death within a matter of months after diagnosis.

Until recently, treatment options have been limited to keeping the pulmonary veins open through catheterization or surgery. Yet this approach only removes the cells but does nothing to prevent their regrowth. Now, a clinical trial shows that adding chemotherapy to a treatment regimen including catheterization and surgery can deter abnormal cellular growth and finally give children with PVS a chance to grow up.

Results of the trial, run by the Boston Children’s Hospital Pulmonary Vein Stenosis Program, were recently published in the Journal of Pediatrics.

“Through this approach, we’ve created the first-ever population of survivors who are living with severe PVS,” says Christina Ireland, RN, MS, FNP, who has managed enrolling patients in the trial and treating new patients since the trial ended. “We’ve changed this disease from an acute killer to a chronic, manageable condition.”

Read Full Story | Leave a Comment

Very-low-carb diet can safely curb blood sugar in type 1 diabetes, study suggests

very-low-carb diet shows promise in type 1 diabetes

David Ludwig, MD, PhD, an endocrinologist at Boston Children’s Hospital, has written popular books espousing a low-glycemic, low-carbohydrate diet for weight control. He has argued that high-glycemic diets are contributing to the epidemic of type 2 diabetes.  But he hadn’t given much thought to carbohydrate restriction for type 1 diabetes until 2016.

At a conference, Ludwig met a surgeon with type 1 diabetes who maintains normal hemoglobin A1c levels (indicating high blood sugar control) on a very-low-carbohydrate diet. This surprised and impressed him: he had never seen any patient with type 1 diabetes able to completely normalize their hemoglobin A1cs. Moreover, most diabetes experts discourage very-low-carb diets, believing they pose a risk for hypoglycemia, or a dangerous drop in blood sugar.

Read Full Story | Leave a Comment

Stick-on respiratory monitor allows early detection of breathing problems

Toddler wearing ExSpiron respiratory monitor
A mock-up of the ExSpiron monitoring a toddler’s breathing

Children can be at risk for compromised breathing after surgery or from conditions like asthma, congestive heart failure or sleep apnea. Opioid therapy and sedation for medical procedures can also depress breathing. Unless a child is sick enough to have a breathing tube, respiratory problems can be difficult to detect early. Yet early detection can mean the difference between life and death.

“There is currently no real-time objective measure,” says Viviane Nasr, MD, an anesthesiologist with Boston Children’s Hospital’s Division of Cardiac Anesthesia. “Instead, respiratory assessment relies on oximetry data, a late indicator of respiratory decline, and on subjective clinical assessment.”

A new device, recently cleared by the FDA for children 1 year and older in medical settings, provides an easy, noninvasive way to tell how much air the lungs are receiving in real time. It can signal problems as much as 15-30 minutes before standard pulse oximetry picks up low blood oxygenation, according to one study.

Read Full Story | Leave a Comment

Diagnosing autism in infants? EEG algorithms make accurate predictions

autism EEGs
EEG nets are easily slipped over an infant’s head and cause no discomfort. (Credit: Nelson Lab)

The earlier autism can be diagnosed, the more effective interventions typically are. But the signs are often subtle or can be misinterpreted at young ages. As a result, many children aren’t diagnosed until age 2 or even older. Now, a study shows that electroencephalograms (EEGs), which measure the brain’s electrical activity, can accurately predict or rule out autism spectrum disorder (ASD) in babies as young as 3 months old. It appears today in Scientific Reports.

The beauty of EEG is that it’s already used in many pediatric neurology or developmental pediatric settings. “EEGs are low-cost, non-invasive and relatively easy to incorporate into well-baby checkups,” says study co-author Charles Nelson, PhD, director of the Laboratories of Cognitive Neuroscience at Boston Children’s Hospital. “Their reliability in predicting whether a child will develop autism raises the possibility of intervening very early, well before clear behavioral symptoms emerge.”

Read Full Story | Leave a Comment

A bold strategy to enhance CAR T-cell therapies, capable of targeting DIPG and other tough-to-treat cancers

CAR T-cell therapy uses a patient's own genetically modified T cells to attack cancer, as pictured here, where T cells surround a cancer cell.
T cells surround a cancer cell. Credit: National Institutes of Health

A Boston-based team of researchers, made up of scientists and pediatric oncologists, believe a better CAR T-cell therapy is on the horizon.

They say it could treat a range of cancers — including the notorious, universally-fatal childhood brain cancer known as diffuse intrinsic pontine glioma or DIPG — by targeting tumor cells in an exclusive manner that reduces life-threatening side effects (such as off-target toxicities and cytokine release syndrome). The team, led by Carl Novina, MD, PhD, and Mark Kieran, MD, PhD, of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, calls their approach “small molecule CAR T-cell therapy.”

Their plan is to optimize the ability for CAR T-cell therapies, which use a patient’s genetically modified T cells to combat cancer, to more specifically kill tumor cells without setting off an immune response “storm” known as cytokine release syndrome. The key ingredient is a unique small molecule that greatly enhances the specificity of the tumor targeting component of the therapy.

Read Full Story | Leave a Comment

Snaps from the lab: Developing better autism interventions

How can we better understand and support people with autism? And how can we tell if an intervention is working? Those are among the questions being asked in the Faja Laboratory, where Susan Faja, PhD, and her team study social and cognitive development in children, teens and young adults with autism spectrum disorder (ASD), using a variety of tools.

Originally on Snapchat, this video walks through some of these studies, including:

  • Individual Development of Executive Attention (IDEA), looking at executive functioning in 2- to 6-year-olds with autism, developmental disability or no developmental concerns. Executive functions include the ability to plan, manage complex or conflicting information, problem-solve and shift between different rules in different situations. By observing young children while they play hands-on tabletop games, Faja’s team is trying to find out: do kids with autism have problems with executive functioning early on, or do problems emerge later as a result of autism itself? The study is an extension of the ongoing GAMES project for 7- to 11-year-olds, in which children play video games designed to boost their executive functions. Faja is also looking to teach parents to use the games with their children at home.
  • Autism Biomarkers Consortium for Clinical Trials (ABC-CT), a multi-institution study that’s seeking objective, reliable measurements of social function and communication in people with autism. “Language, IQ and social assessments are not so sensitive when you’re looking for changes in autism symptoms, especially subtle ones,” says Faja. So her team is using physiologic measures — like EEGs to measure brain activity and eye-tracking technology to measure visual attention — and correlating them with behavioral and cognitive assessments. The ultimate goal is to validate a set of tools that can be used in clinical trials — and in day-to-day practice — to objectively measure and predict how children with ASD will respond to treatment.​
  • Competence in Romance and Understanding Sexual Health (CRUSH), a new study, will enroll young adults with autism and their parents. The goal is to develop curriculum around dating and sexual health that meets the needs of the ASD population, starting with interviews to determine their needs and interests. No evidence-based curricula currently exist for adults on the spectrum, says Faja.

Learn more about current and future projects in the Faja Lab.

Read Full Story | Leave a Comment