Stories about: Therapeutics

Two resilient dogs point to new targets for Duchenne muscular dystrophy

Duchenne muscular dystrophy protective genes
Suflair, at right, is alive and well at 11 years despite having the DMD mutation (courtesy Natássia Vieira)

Two golden retrievers that had the genetic mutation for Duchenne muscular dystrophy (DMD), yet remained healthy, have offered up yet another lead for treating this muscle-wasting disorder.

For several years, Natássia Vieira, PhD, of the University of São Paolo, also a fellow in the Boston Children’s Hospital lab of Louis Kunkel, PhD, has been studying a Brazilian colony of golden retrievers. All have the classic DMD mutation and, as expected, most of these dogs are very weak and typically die by 2 years of age. That’s analogous to children with DMD, who typically lose the ability to walk by adolescence and die from cardiorespiratory failure by young adulthood.

But two dogs appeared unaffected. Both ran around normally. The elder dog, Ringo, lived a full lifespan, and his son Suflair is still alive and well at age 11.

Read Full Story | Leave a Comment

Webchat to highlight what’s new in pediatric brain tumors

pediatric brain tumors, child MRI

Last September, the National Center for Health Statistics reported that brain tumors have overtaken the much more common leukemia as the leading cause of death from pediatric cancer. Although progress has been made and the promise of more progress is on the horizon, the cure rate for childhood brain tumors lags behind a number of other pediatric cancers.

As pediatric neuro-oncologist Peter Manley, MD, of Dana-Farber/Boston Children’s Cancer and Blood Disorders Center told Live Science, new research on cancer genomics “is so impressive that my feeling is that we will continue to see a decline in deaths.”

To mark Brain Tumor Awareness Month, Mark Kieran, MD, PhD, clinical director of the Brain Tumor Center at Dana-Farber/Boston Children’s, will host a webchat on Monday, May 22 (3:30 p.m. ET). The live chat will highlight the latest research and treatments for pediatric brain tumors. Here’s a look back at some recent developments:

Read Full Story | Leave a Comment

One family, one researcher: How Mikey’s journey is fueling an attack on DIPG

Picture of Mikey on 11th birthday, shortly after his DIPG diagnosis
Mikey and his family at his 11th birthday party, just one week after he was diagnosed with DIPG, a devastating tumor in his brain stem. Since Mikey’s passing in 2008, his family has been committed to supporting DIPG research.

“It’s a brutal disease; there’s just no other way to describe DIPG,” says Steve Czech. “And what’s crazy is that there aren’t many treatment options because it’s such a rare, orphan disease.”

Czech’s son, Mikey, was diagnosed with a diffuse intrinsic pontine glioma (DIPG) on Jan. 6, 2008. It was Mikey’s 11th birthday. The fast growing and difficult-to-treat brainstem tumors are diagnosed in approximately 300 children in the U.S. each year.

Sadly, the virtually incurable disease comes with a poor prognosis for most children. The location of DIPG tumors in the brainstem — which controls many of the body’s involuntary functions, such as breathing — has posed a huge challenge to successful treatment thus far.

“Typically, they give kids about nine months,” says Czech. “Our lives changed forever the day that Mikey was diagnosed.”

Read Full Story | Leave a Comment

Medical milestone: Making blood stem cells in the lab

blood stem cells
The gradation of pink-to-blue cells illustrates the transition from hemogenic endothelial cells to blood progenitor cells during normal embryonic blood development. Daley, Sugimura and colleagues recreated this process in the lab, then added genetic factors to produce a mix of blood stem and progenitor cells. (O’Reilly Science Art)

Pluripotent stem cells can make virtually every cell type in the body.  But until now, one type has remained elusive: blood stem cells, the source of our entire complement of blood cells.

Since human embryonic stem cells (ES cells) were isolated in 1998, scientists have tried to get them to make blood stem cells. In 2007, the first induced pluripotent stem (iPS) cells were made from human skin cells, and have since been used to generate multiple cell types, such as neurons and heart cells.

But no one has been able to make blood stem cells. A few have have been isolated, but they’re rare and can’t be made in enough numbers to be useful.

Now, the lab of George Daley, MD, PhD, part of Boston Children’s Stem Cell Research program as finally hit upon a way to create blood stem cells in quantity, reported today in Nature.

Read Full Story | Leave a Comment

Naturally-occurring molecule in tree leaves could treat anemia, other iron disorders

Hinoki cypress

“Without iron, life itself wouldn’t be feasible,” says Barry Paw, MD, PhD. “Iron transport is very important because of the role it plays in oxygen transport in blood, in key metabolic processes and in DNA replication.”

Although iron is crucial to many aspects of health, it needs the help of the body’s iron-transporting proteins. Which is why new findings reported in Science could impact a whole slew of iron disorders, ranging from iron-deficiency anemia to iron-overload liver disease. The team has discovered that a small molecule found naturally in Japanese cypress tree leaves, hinokitiol, can transport iron to overcome iron disorders in animals.

The multi-institutional research team is from the University of Illinois, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Brigham and Women’s Hospital and Northeastern University. Paw, co-senior author on the new paper and a physician at Dana-Farber/Boston Children’s, and members of his lab demonstrated that hinokitiol can successfully reverse iron deficiency and iron overload in zebrafish disease models.

“Amazingly, we observed in zebrafish that hinokitiol can bind and transport iron inside or out of cell membranes to where it is needed most,” says Paw.

This gives hinokitiol big therapeutic potential.

Read Full Story | Leave a Comment

To address chronic pain, you need to address sleep

chronic pain
Acute or chronic sleep loss exacerbates pain, finds a study that kept mice awake for long periods by entertaining them.

The ongoing opioid epidemic underscores the dire need for new pain medications that aren’t addicting. New research published today in Nature Medicine suggests a possible avenue of relief for people with chronic pain: simply getting more sleep, or, failing that, taking medications to promote wakefulness.

In an unusually rigorous mouse study, either approach relieved pain better than ibuprofen or even morphine. The findings reveal an unexpected role for alertness in setting pain sensitivity.

Read Full Story | 1 Comment | Leave a Comment

Protein science 2.0: Amping up antibodies

Institute for Protein Innovation antibody libraries
The Institute for Protein Innovation, launching next week with $15 million in grants and philanthropy, aims to develop comprehensive, open-source libraries of antibodies targeting human proteins.

It began with the proteins. Before Watson and Crick unraveled DNA’s double helix in the 1950s, biochemists snipped, ground and pulverized animal tissues to extract and study proteins, the workhorses of the body.

Then, in 1990, the Human Genome Project launched. It promised to uncover the underpinnings of all human biology and the keys to treating disease. Funding for DNA and RNA tools and studies skyrocketed. Meanwhile, protein science fell behind.

While genomics unveiled a wealth of information, including the identity of genes that lead to disease when mutated, researchers still do not fully understand what all the genes really do and how mutations change their function and cause disease.

Now proteins are promising to provide the missing link.

Read Full Story | Leave a Comment

SPG47: When rare disease research gets a push from parents

SPG47 citizen science
Robbie’s parents are spurring scientific research into her ultra-rare neurodegenerative disorder.

Spastic Paraplegia 47 doesn’t roll off the tongue. The name is complicated and challenging, much like SPG47 itself. When I tell healthcare providers my 3-year-old daughter’s diagnosis, I take a deep breath and wait for the inevitable question: What, exactly, is that?

More than 70 types of Hereditary Spastic Paraplegia (HSP) have been identified to date; almost all are neurodegenerative. At best, HSP causes distress and disruption; at worst, it has devastating, potentially life-threatening consequences. Its “pure” form impairs the lower extremities, causing extreme spasticity and weakness. Its “complicated” form — like our daughter Robbie’s — also impacts systemic and/or neurologic function. Many HSP sub-types have been diagnosed in only a handful of people worldwide, leaving affected families feeling lost and disconnected.

Read Full Story | Leave a Comment

New dataset reveals the individuality of childhood cancers

Tumor cells, like the ones pictured here, have unique genetic profiles across childhood cancers
Imaging of tumor cells. A new dataset, one of the largest of its kind, contains the genomic profiles of 1,215 pediatric tumors.

Childhood cancers are rare and account for about one percent of U.S. cancer diagnoses. They differ from adult tumors in that they often arise from many more diverse kinds of cells, including embryonal tissues, sex-cord stromal cells of the ovary or testis, the brain’s neural and glial cells and more.

Yet although improved tumor detection and treatment have increased survival rates for many different cancer subtypes, more than 1,900 children across the U.S. still lose their battle each year.

A new dataset — comprising the genomic profiles of a huge array of pediatric tumors — could help change that.

Read Full Story | Leave a Comment

Effective vaccination of newborns: Getting closer to the dream

 

newborn vaccines global health

In many parts of the world, babies have just one chance to be vaccinated: when they’re born. Unfortunately, newborns’ young immune systems don’t respond well to most vaccines. That’s why, in the U.S., most immunizations start at two months of age.

Currently, only BCG, polio vaccine and hepatitis B vaccines work in newborns, and the last two require multiple doses. But new research raises the possibility of one-shot vaccinations at birth — with huge implications for reducing infant mortality.

Read Full Story | Leave a Comment