Stories about: Therapeutics

In zebrafish, a way to find new cancer therapies, targeting tumor promoters

A new study suggests the power of zebrafish as tools for cancer drug discovery (PHOTO: KATHERINE C. COHEN)

The lab of Leonard Zon, MD, has long been interested in making blood stem cells in quantity for therapeutic purposes. To test for their presence in zebrafish, their go-to research model, they turned to the MYB gene, a marker of blood stem cells. To spot the cells, Joseph Mandelbaum, a PhD candidate in the lab, attached a fluorescent green tag to MYB that made it easily visible in transparent zebrafish embryos.

“It was a real workhorse line for us,” says Zon, who directs the Stem Cell Research Program at Boston Children’s Hospital.

In addition to being a marker of blood stem cells, MYB is an oncogene. About five years ago, Zon was having lunch at a cancer meeting and, serendipitously, sat next to Jeff Kaufman, who was also interested in MYB. Kaufman was excited to hear about Zon’s fluorescing MYB zebrafish, which can be studied at scale and are surprisingly similar to humans genetically.

“Have you ever heard of adenoid cystic carcinoma?” he asked Zon.

Read Full Story | Leave a Comment

Super suppressor: Boosting a gene that stifles tumor growth

Researchers have packaged a tumor suppressor into a therapeutic nanoparticle.
Researchers have packaged a tumor suppressor into a therapeutic nanoparticle. IMAGE: ISLAM, ET AL.

Most of the time, cancer cells do a combination of two things: they overexpress genes that drive tumor growth and they lose normal genes that typically suppress tumors. No two tumors are exactly alike, but some combination of these two effects is usually what results in cancer. Now, for the first time, researchers have shown that it’s possible to treat cancer by delivering a gene that naturally suppresses tumors.

Researchers from Boston Children’s Hospital, Brigham and Women’s Hospital and Memorial Sloan Kettering Cancer Center combined their cancer biology and nanomaterials expertise and developed a therapeutic capable of delivering a tumor suppressor gene known as PTEN, the loss of which can allow tumors to grow unchecked.

In several preclinical models, their PTENboosting therapeutic was able to inhibit tumor growth. Their findings were published yesterday in Nature Biomedical Engineering.

Read Full Story | Leave a Comment

Neurons from the brain amplify touch sensation. Could they be targeted to treat neuropathic pain?

neuropathic pain amplification circuit
CREDIT: ALBAN LATREMOLIERE/BOSTON CHILDREN’S HOSPITAL/JOHNS HOPKINS

Neuropathic pain is a hard-to-treat chronic pain condition caused by nervous system damage. For people affected, the lightest touch can be intensely painful. A study in today’s Nature may open up a new angle on treatment — and could help explain why mind-body techniques can sometimes help people manage their pain.

“We know that mental activities of the higher brain — cognition, memory, fear, anxiety — can cause you to feel more or less pain,” notes Clifford Woolf, MB, BCh, PhD, director of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “Now we’ve confirmed a physiological pathway that may be responsible for the extent of the pain. We have identified a volume control in the brain for pain — now we need to learn how to switch it off.”

Read Full Story | Leave a Comment

Typing medulloblastoma: From RNA to proteomics and phospho-proteomics

medulloblastoma proteomics study
Medulloblastoma (CREDIT: ARMED FORCES INSTITUTE OF PATHOLOGY/WIKIMEDIA)

Medulloblastoma is one of the most common pediatric brain tumors, accounting for nearly 10 percent of cases. It occurs in the cerebellum, a complex part of the brain that controls balance, coordination and motor function and regulates verbal expression and emotional modulation. While overall survival rates are high, current therapies can be toxic and cause secondary cancers. Developing alternative therapeutics is a priority for the field.

As early as the 1990s, the lab of Scott Pomeroy, MD, PhD, neurologist-in-chief at Boston Children’s Hospital, discovered molecules in medulloblastoma tumors that could predict response to therapies. In 2010, Pomeroy and colleagues uncovered four distinct molecular subtypes of medulloblastoma.

The World Health Organization updated the brain tumor classification scheme in 2016 to include these molecular and genetic features. In the new scheme, tumor subtypes with a good molecular prognosis receive less radiation and chemotherapy. But the creation of targeted therapeutics has remained a challenge, since some of the genetic pathways implicated in these subtypes are found in non-cancerous cells.

Read Full Story | Leave a Comment

Blood filtration device could provide personalized care for sepsis

Artistic image of cytokines
Could cell-signaling proteins called cytokines be modulated to tame inflammation? IMAGE: ADOBE STOCK

Cytokines are small proteins produced by the body’s cells that have a big impact on our immune system. Researchers at Boston Children’s Hospital believe that modulating their presence in our bodies could be the key to improving outcomes in life-threatening cases of trauma, hemorrhage and many other conditions including sepsis, which alone impacts nearly one million Americans each year.

The reason? Cells essentially use cytokines to talk to one another. In response to their surroundings, cells release different types of cytokines that encourage inflammatory or anti-inflammatory effects on the body. Infection or trauma causes cells to pump out more cytokines that produce inflammation. Altogether, an escalating chorus of cytokines can sometimes tip a person’s body into overwhelming inflammation that can turn fatal, which is what happens during sepsis.

But what if scientists could remove the problematic cytokines to bring the choir into perfect tune, allowing the immune system to respond with just the right amount of inflammation for healing?

Read Full Story | Leave a Comment

Finally in the game: Patient in drug trial for PTEN mutation seems to benefit

The first patient to receive everolimus for PTEN hamartoma tumor syndrome
Preston Hall is the first Boston Children’s Hospital patient with PTEN hamartoma tumor syndrome to be treated with everolimus. At left, Siddharth Srivastava, MD. (PHOTO: SEBASTIAN STANKIEWICZ/BOSTON CHILDREN’S HOSPITAL)

From the time of Preston Hall’s birth at 30 weeks, his parents navigated multiple diagnoses, surgeries and sometimes life-threatening medical issues. At 11 months, Preston underwent skull revision surgery for trigonocephaly (a fusion of the skull bones causing a triangular-shaped forehead). After surgery, his doctors discovered serious airway and gastrointestinal issues that led to his failure to thrive. Preston eventually bounced back, but the underlying cause of his complex medical problems remained a mystery. All the while, his fraternal twin Luke overcame more typical preemie issues by age 3.

“At one point Preston had 20 different diagnoses,” his mother, Jennifer Hall, says. “It wasn’t until he was about 4 years old that we started to think his delays were not due to prematurity alone.”

Read Full Story | Leave a Comment

A life-saving adjustment in IV nutrition cleared by the FDA

Fourteen years after Charles Rolfe received an experimental IV fish-oil solution, Omegaven has been approved by the FDA. (PHOTOS: WEBB CHAPPELL/ROLFE FAMILY)

In 2004, a surgeon and a hospital pharmacist went against the prevailing dogma. They began revising the IV nutrition formula being given to children unable to take food by mouth. In doing so, they saved many lives. Yet, it wasn’t until last month that their intervention, a new fat emulsion called Omegaven, gained formal approval from the Food and Drug Administration.

Children with intestinal failure due to gastroschisis, necrotizing enterocolitis or other diseases are typically placed on parenteral nutrition, an intravenous method of feeding. Without it, they would die. But prolonged use of IV nutrition — using the traditional formula — had a massive side effect: injury to the liver. The majority of children either died from liver failure or required a liver transplant.

By 2001, surgeon Mark Puder, MD, at Boston Children’s Hospital was tired of watching babies slowly die from liver disease that should be preventable. He suspected something needed to be adjusted in the IV nutrition formula — particularly the fat component, derived from soybean oil and known as Intralipid.

Read Full Story | Leave a Comment

Patients with epilepsy and inflammatory bowel disease to get DNA sequenced in study

3000 exomes study to sequence patients with epilepsy, IBD
ILLUSTRATION: ADOBE STOCK

Boston Children’s Hospital has embarked on a strategic initiative to accelerate and expand its research genomics gateway, with plans to sequence the DNA of 3,000 patients with epilepsy or inflammatory bowel disease and their family members. Patients will have access to enroll in this pilot study if their condition is of likely genetic origin but lack a diagnosis after initial clinical genetic testing.

Sequencing will cover the entire exome, containing all of a person’s protein-coding genes. The Epilepsy and IBD were chosen for the pilot because Ann Poduri, MD, MPH and Scott Snapper, MD, PhD, have already made huge inroads into the genetics of these respective disorders. Both have built large, well characterized patient databases for research purposes, have disease-specific genetic expertise and have begun using their findings to inform their patients’ care.

Read Full Story | Leave a Comment

Inhibiting inhibitory neurons gets mice with spinal cord injury to walk again

Boosting KCC2 expression as a treatment for spinal cord injury
Boosting KCC2 expression: A cross section of a mouse spinal cord, stained two different ways, showing increased expression of KCC2 in inhibitory neurons. This increased expression, induced genetically or with a small-molecule drug, correlated with improved motor function, including ankle movement and stepping. (Zhigang He Lab)

Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn’t completely severed. Why don’t the spared portions of the spinal cord keep working, allowing at least some movement? A new study just published online by Cell provides insight into why these nerve pathways remain quiet. Most intriguingly, it shows that injection with a small-molecule compound can revive these circuits in paralyzed mice — and get them walking again.

“We saw 80 percent of mice treated with this compound recover their stepping ability,” says Zhigang He, PhD, of Boston Children’s Hospital’s F.M. Kirby Neurobiology Center, the study’s senior investigator. “For this fairly severe type of spinal cord injury, this is the most significant functional recovery we know of.”

Read Full Story | Leave a Comment

Skewed T-cell pathway may help explain transplant rejection, autoimmune diseases

Th17 transplant rejection
Researchers discover a pathway that controls our T helper cell profiles (Fawn Gracey illustration)

Second in a two-part series on transplant tolerance. (See part one.)

Our immune system has two major kinds of T cells. T helper cells, also known as effector T cells, tend to rev up our immune responses, while T regulatory cells tend to suppress or downregulate them. Last week we reported that bolstering populations of T regulatory cells might help people tolerate organ transplants better. A new study turned its focus to T helper cells, and found that an imbalance of these cells causes an exaggerated immune response that may also contribute to transplant rejection.

The study also showed, in mice and in human cells in a dish, that the immune imbalance can be potentially reversed pharmacologically. Findings were published yesterday in the Journal of Clinical Investigation.

Read Full Story | Leave a Comment