Stories about: Therapeutics

From mice to humans: Genetic syndromes may be key to finding autism treatment

Boy and a mouse eye-to-eye
(Aliaksei Lasevich/stock.adobe.com)

A beautiful, happy little girl, Emma is the apple of her parents’ eyes and adored by her older sister. The only aspect of her day that is different from any other 6-month-old’s is the medicine she receives twice a day as part of a clinical trial for tuberous sclerosis complex (TSC).

Emma’s mother was just 20 weeks pregnant when she first heard the words “tuberous sclerosis,” a rare genetic condition that causes tumors to grow in various organs of the body. Prenatal imaging showed multiple benign tumors in Emma’s heart.

Emma displays no symptoms of her disease, except for random “spikes” on her electroencephalogram (EEG) picked up by her doctors at Boston Children’s Hospital. The medication she is receiving is part of the Preventing Epilepsy Using Vigabatrin in Infants with TSC (PREVeNT) trial. Her mother desperately hopes it is the active antiepileptic drug, vigabatrin, rather than placebo.

Read Full Story | Leave a Comment

Severe flu infections linked to underlying genetic variation

Flu virusesThe Center for Disease Control estimates that influenza virus–related illnesses account for more than 200,000 U.S. hospitalizations and 12,000 deaths annually. Young children, the elderly and people with respiratory, cardiac and other chronic health conditions are at particularly high risk for being hospitalized for influenza-related complications. Until now, there has not been a clear reason to explain why some individuals become severely ill from flu and not others.

New findings published in Nature Medicine, however, might change that.

“We’ve identified a genetic variant that we believe may put people at risk of getting life-threatening influenza infections,” says Adrienne Randolph, MD, MSc, a senior associate in pediatric critical care medicine at the Boston Children’s Hospital.

Read Full Story | Leave a Comment

Newly-discovered epigenetic mechanism switches off genes regulating embryonic and placental development

Artwork depicting DNA and the code of genes

A biological process known as genomic imprinting helps control early mammalian development by turning genes on and off as the embryo and placenta grow. Errors in genomic imprinting can cause severe disorders and profound developmental defects that lead to lifelong health problems, yet the mechanisms behind these critical gene-regulating processes — and the glitches that cause them to go awry — have not been well understood.

Now, scientists at Harvard Medical School (HMS) and Boston Children’s Hospital have identified a mechanism that regulates the imprinting of multiple genes, including some of those critical to placental growth during early embryonic development in mice. The results were reported yesterday in Nature.

“A gene that is turned off by epigenetic modifications can be turned on much more easily than a gene that is mutated or missing can be fixed,” said Yi Zhang, PhD, a senior investigator in the Boston Children’s Program in Molecular and Cellular Medicine, a professor of pediatrics at HMS and a Howard Hughes Medical Institute investigator. “Our discovery sheds new light on a fundamental biological mechanism and can lay the groundwork for therapeutic advances.”

Read Full Story | Leave a Comment

CRISPR enables cancer immunotherapy drug discovery

Artwork depicting cancer cells with different genes deleted by CRISPR-Cas9, performed to identify novel cancer immunotherapy targets
These cancer cells (colored shapes) each have a different gene deleted through CRISPR-Cas9 technology. In a novel genetic screening approach, the T cells (red) destroy those cancer cells that have lost genes essential for evading immune attack, revealing potential drug targets for enhancing PD-1-checkpoint-based cancer immunotherapy. Credit: Haining Lab 

A novel screening method using CRISPR-Cas9 genome editing technology has revealed new drug targets that could potentially enhance the effectiveness of PD-1 checkpoint inhibitors, a promising new class of cancer immunotherapy.

The method, developed by a team at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, uses CRISPR-Cas9 to systematically delete thousands of tumor genes to test their function in a mouse model. In findings published today by Nature, researchers led by pediatric oncologist W. Nick Haining, BM, BCh report that deletion of one gene, Ptpn2, made tumor cells more susceptible to PD-1 checkpoint inhibitors. Other novel drug targets are likely around the corner.

PD-1 inhibition “releases the brakes” on immune cells, enabling them to locate and destroy cancer cells. But for many patients, it’s not effective enough on its own.

Read Full Story | Leave a Comment

Three challenges precision medicine faces before it can scale up

Different aspects of precision medicine therapyDoctors, scientists, consumers, entrepreneurs and others came together recently for the Precision Medicine 2017 symposium at Harvard Medical School, now in its third year. This year’s theme was “breakaway business models.” What are challenges in developing targeted treatments based on clinical and genetic data, and how do we overcome them?

Read Full Story | Leave a Comment

Mutated botulinum neurotoxin B: A stronger player in the Botox world?

Clostridium botulinum

Famously associated with smoothing out wrinkles, botulinum toxin — better known as Botox — has been in use for 40 years now. Initially approved as a treatment for crossed eyes and then facial wrinkles, its on- and off-label uses today extend to urinary incontinence, migraines, perspiration, spasticity and even depression. But the diffusion of the toxin away from the injection site can also cause side effects like difficulty swallowing and drooping of the face.

Now, scientists have created an altered botulinum toxin, one that works much better than its natural version and with potentially fewer side effects. Their findings are written up in Nature Communications.

Read Full Story | Leave a Comment

A new inlet to treating neurological disease

Image of brains showing red tracer dye, indicating passage of molecules through the blood-brain barrier
These brain images tell a story about the blood-brain barrier: At left, the brain before injection of red tracer dye. At center, an injection of tracer dye shows only a small amount of molecules can infiltrate the blood brain barrier. At right, a new approach for crossing the blood-brain barrier increases the tracer’s penetration into brain tissue.

The blood-brain barrier was designed by nature to protect the brain and central nervous system (CNS) from toxins and other would-be invaders in the body’s circulating blood. Made up of tightly-packed cells, the barrier allows nutrients to pass into the CNS and waste products from the brain to be flushed out, while blocking entry of harmful substances.

A dysfunctional blood-brain barrier can contribute to CNS diseases including Alzheimer’s and multiple sclerosis (MS). But, ironically, the same blood-brain barrier can keep out drugs intended to treat CNS disease. Scientists have long been seeking ways to overcome this obstacle.

Now, Timothy Hla, PhD, and members of his laboratory in the Boston Children’s Hospital Vascular Biology Program have found a way to selectively control openings in the blood brain barrier to allow passage of small drug molecules.

Read Full Story | Leave a Comment

A new, much needed target for treating Candida albicans

Candida albicans

Fungal diseases commonly bring to mind the words “dangerous” or “difficult to cure.” Now, scientists might just be a step closer to treating diseases caused by one common, problematic fungus, Candida albicans, by targeting a key player unique to fungi in an important growth pathway.

Read Full Story | Leave a Comment

A surprising new link between inflammation and mental illness — and a potential drug to protect the brain

A synapse being attacked by microglia, which causes neuropsychiatric symptoms in lupus
In the brain, a synapse (red – see diagonal “spine” across center of photo) is seen being wrapped around and attacked by immune cells called microglia (green), leading to synapse loss. Credit: Carroll lab / Boston Children’s Hospital

Up to 75 percent of patients with systemic lupus erythematosus — an incurable autoimmune disease commonly known as “lupus” —  experience neuropsychiatric symptoms.  But so far, our understanding of the mechanisms underlying lupus’ effects on the brain has remained murky.

“In general, lupus patients commonly have a broad range of neuropsychiatric symptoms, including anxiety, depression, headaches, seizures, even psychosis,” says Allison Bialas, PhD, a research fellow working in the lab of Michael Carroll, PhD, of Boston Children’s Hospital. “But their cause has not been clear — for a long time it wasn’t even appreciated that these were symptoms of the disease.”

Collectively, lupus’ neuropsychatric symptoms are known as central nervous system (CNS) lupus. Their cause has been unclear until now.

Perhaps, Bialas thought, changes in the immune systems of lupus patients were directly causing these symptoms from a pathological standpoint. Working with Carroll and other members of his lab, Bialas started out with a simple question, and soon, made a surprising finding – one that points to a potential new drug for protecting the brain from the neuropsychiatric effects of lupus and other diseases. The team has published its findings in Nature.

Read Full Story | 1 Comment | Leave a Comment

Flipping the switch on tumor growth

Pictures of angiogenic tumor cells
Time-lapse imaging can reveal tell-tale changes in cellular behaviors associated with tumor growth.

Without a blood supply, a tumor can remain dormant and harmless. But new blood vessel growth from an existing vessel, a process called angiogenesis, is a hallmark of both benign and malignant tumors. During angiogenesis, blood vessels invade tumors and activate them, fueling their growth.

Now, Marsha A. Moses, PhD, who directs the Vascular Biology Program at Boston Children’s Hospital, and members of her laboratory have revealed that a specialized imaging system can detect changes in cell behaviors. These changes predict when tumors are leaving a state of dormancy and becoming more likely to grow.

Read Full Story | Leave a Comment