Stories about: Alan Beggs

New hope for X-linked myotubular myopathy as gene therapy clinical trial begins

gene therapy myotubular myopathy

Boys born with X-linked myotubular myopathy (XLMTM) face a grim prognosis. Extreme muscle weakness leaves many ventilator-dependent from birth, and most infants need feeding tubes. About half pass away before 18 months of age.

Last week, the biotechnology company Audentes Therapeutics announced the dosing of the first patient in a gene-therapy clinical trial — 21 years after the MTM1 gene was first cloned.

Hopes are high. Gene therapy has already shown striking benefits in dogs with XLMTM in studies co-authored by Alan Beggs, PhD, director of the Manton Center for Orphan Disease Research at Boston Children’s Hospital, and colleagues at Généthon and the University of Washington. In the most recent study, 10-week-old Labrador retrievers already showing signs of the disease showed improvements in breathing, limb strength and walking gait after a single dose of the gene therapy vector.

Read Full Story | Leave a Comment

A gene therapy advance for muscle-wasting myotubular myopathy

X-linked myotubular myopathy XLMTM gene therapy
Nibs, a carrier of MTM whose descendants provided the basis for the gene therapy study. (Read more of her story.)

For more than two decades, Alan Beggs, PhD, at Boston Children’s Hospital has explored the genetic causes of congenital myopathies, disorders that weaken children’s muscles, and investigated how the mutations lead to muscle weakness. For one life-threatening disorder, X-linked myotubular myopathy (XLMTM), the work is approaching potential payoff, in the form of a clinical gene therapy trial.

Boys with XLMTM are born so weak that they are dependent on ventilators and feeding tubes to survive. Almost half die before 18 months of age.

Read Full Story | Leave a Comment

BabySeq: Early results of newborn genomic sequencing are mixed

BabySeq
While a previous study indicated parents were very interested in newborn sequencing, just 7 percent of those approached have enrolled in BabySeq so far.

It seems like a great idea. We all have our genomes sequenced at birth, and any findings that suggest a future medical problem are addressed with early interventions, optimizing our health and extending our lives. But are parents of newborns ready to embrace the vision? Yes and no, according to interim results of a first-of-its-kind randomized trial of newborn sequencing. Findings from what’s known as the BabySeq Project were presented last week at the American Society of Human Genetics (ASHG) 2016 Annual Meeting.

Read Full Story | 1 Comment | Leave a Comment

Creating a blueprint for rare disease medicine

blueprint for rare disease medicinePresident Obama’s Precision Medicine Initiative, first laid out in his 2015 State of Union Address, aims to develop individualized care that empowers patients and takes into account genetic, environmental and lifestyle differences. Obama is asking Congress for $309 million for the initiative next year.

One big component is the Department of Veteran Affairs’ Million Veteran Program, which has signed up more than 450,000 veterans to date and is now open to active-duty military personnel. Another is NIH support for cancer trials that match treatments with patients’ genomic profiles.

Parent/citizen scientist Matt Might has in mind another group: patients with undiagnosed genetic disorders. In searching for a diagnosis for his son Bertrand, Might came up with a precision medicine algorithm that outlines step by step what a patient and family can do — from genomic sequencing to finding similar patients to working with biomedical researchers to find therapeutic strategies. It’s an impressively comprehensive blueprint for citizen science.

As Might detailed today at a White House summit on the Precision Medicine Initiative, he now has worms at the University of Utah modeling his son’s disease, whose symptoms include seizures, extreme developmental delay and an inability to make tears. He also has a molecular target and a list of 70 compounds that hit it, including 14 that are already approved by the FDA.

Can Might’s vision be scaled and made part of routine medical care, keeping the patient front and center?

Read Full Story | Leave a Comment