Stories about: beta-thalassemia

More efficient gene editing for blood stem cells could ease hemoglobin disorders

A new CRISPR strategy overcomes prior technical challenges. IMAGE: NANCY FLIESLER / ADOBE STOCK

The ability to edit genes in patients’ blood stem cells — which produce red blood cells, platelets, immune cells and more — offers the potential to cure many genetic blood disorders. If all goes well, the corrected cells engraft in the bone marrow and produce healthy, properly functioning blood cells… forever.

But scientists have had difficulty introducing edits into blood stem cells. The efficiency and specificity of the edits and their stability once the cells engraft in the bone marrow have been variable.

A new approach, described this week in Nature Medicine and in January in the journal Blood, overcomes prior technical challenges, improving the efficiency, targeting and durability of the edits. Researchers at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and the University of Massachusetts Medical School successfully applied the technique to two common blood diseases — sickle cell disease and beta thalassemia — involving mutations in the gene for beta globin protein.

Read Full Story | Leave a Comment

Sickle cell disease and the thalassemias: The advantages of staying forever young

Flipping a single molecular switch could turn off the mutation that causes sickle cell diseae. Stuart Orkin has already done it in mice. (CDC PHIL)

What if we really could turn our bodies’ clocks back? In some cases, that could be a really good thing. Take sickle cell disease. A scourge of tens of thousands worldwide, it stems from a genetic defect in hemoglobin, the oxygen-carrying protein in red blood cells.

Normally, our bodies can produce two forms of hemoglobin: adult hemoglobin, the form susceptible to the sickle cell mutation; and fetal hemoglobin, which is largely produced during development and for a short time after birth. Our bodies finish making the switch from fetal to adult hemoglobin production by about four to six months old – the same time frame when children with the sickle cell mutation first start to show symptoms of the disease.

Read Full Story | Leave a Comment