Stories about: bioengineering

Soft robot could aid failing hearts by mimicking healthy cardiac muscle

heart-failure

Every year, about 2,100 people receive heart transplants in the U.S., while 5.7 million suffer from heart failure. Given the scarcity of available donor hearts, clinicians and biomedical engineers from Boston Children’s Hospital and Harvard University have spent several years developing a mechanical alternative.

Their proof of concept is reported today in Science Translational Medicine: a soft robotic sleeve that is fitted around the heart, where it twists and compresses the heart’s chambers just like healthy cardiac muscle would do.

Heart failure occurs when one or both of the heart’s ventricles can no longer collect or pump blood effectively. Ventricular assist devices (VADs) are already used to sustain end-stage heart failure patients awaiting transplant, replacing the work of the ventricles through tubes that take blood out of the heart, send it through pumps or rotors and power it back into a patient’s bloodstream. But while VADs extend lives, they can cause complications.

Read Full Story | Leave a Comment

MRI-powered ‘millirobots’ could swim around the body, drive needles, puncture tissues

(noppasit TH/Shutterstock)
(noppasit TH/Shutterstock)

MRI is a staple of surgical imaging, but it has the potential to do much more than take pictures. In 2011, bioengineer Pierre Dupont, PhD, and colleagues demonstrated that an MRI machine’s magnetic field could power a motor strong enough to control a robotic instrument, in this case driving a needle into an organ to do a biopsy.

But Dupont, head of the Pediatric Cardiac Bioengineering Lab at Boston Children’s Hospital, wants to go further. “We had this idea, admittedly fanciful: What if you could swim robots through the body?” he says. “If you could inject something systemically and steer it to just hit your target, that would be a cool application.”

Read Full Story | Leave a Comment

Gene therapy to germline editing: Promises, challenges, ethics

A report this April rocked the scientific world: scientists in China reported editing the genomes of human embryos using CRISPR/Cas9 technology. It was a limited success: of 86 embryos injected with CRISPR/Cas9, only 71 survived and only 4 had their target gene successfully edited. The edits didn’t take in every cell, creating a mosaic pattern, and worse, unwanted DNA mutations were introduced.

“Their study should give pause to any practitioner who thinks the technology is ready for testing to eradicate disease genes during [in vitro fertilization],” George Q. Daley, MD, PhD, director of the Stem Cell Transplantation Program at Boston Children’s Hospital, told The New York Times. “This is an unsafe procedure and should not be practiced at this time, and perhaps never.”

As Daley detailed last week in his excellent presentation at Harvard Medical School’s Talks@12 series, the report reignited an ethical debate around tampering with life that’s hummed around genetic and stem cell research for decades. What the Chinese report adds is the theoretical capability of not just changing your genetic makeup, but changing the DNA you pass on to your children.

Read Full Story | Leave a Comment

CRISPR gene editing is creating a buzz in Boston

CRISPR gene editing Boston

You have an immune system. Your cat has an immune system. And bacteria have an immune system, too—one that we’ve tapped to make one of the most powerful tools ever for editing genes.

The tool is called CRISPR (for “clustered regularly interspaced short palindromic repeats”), and it makes use of enzymes that “remember” viral genes and cut them out of bacterial genomes. Applied to bioengineering, CRISPR is launching a revolution. And the Boston Globe reported over the weekend that while researchers at the University of California at Berkeley first developed CRISPR, the technique is booming in labs around Boston.

Read Full Story | Leave a Comment

Genome editing: A CRISPR way to correct disease

CRISPR Cas9 genome editing Technology sometimes unfolds at a slow, measured pace and sometimes at lightning speed. Right now, we are witnessing what is arguably one of the fastest moving fields in biomedical science: a form of genome editing aptly known as CRISPR.

CRISPR allows researchers to make very precise—some would say crisp—changes to the genomes of human cells and those of other organisms. You might think of it as a kind of guided missile. Its precision is opening the doors to a wide variety of research and, hopefully, medical applications. Indeed, the possibilities seem to be bound only by scientists’ imaginations.

“For a long time, we have been accumulating new knowledge about which gene mutation causes which disease. But until very recently, we haven’t had the ability to go in and correct those mutations,” explains Feng Zhang, PhD, a core member of the Broad Institute of Harvard and MIT, and one of the method’s pioneers. “CRISPR is one of the tools that is starting to allow us to directly go in and do surgery on the genome and replace the mutations.”

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. While this name is a bit verbose, it points to the technology’s origins: a set of genetic sequences first discovered in bacteria.

Read Full Story | Leave a Comment

Building cyborg tissues: Bioengineering meets nanoelectronics

We're at the cusp of integrating miniaturized electronics and monitoring into engineered tissues and organs.

At the start of the 2009 Star Trek reboot (this is relevant, trust me), the USS Kelvin’s captain meets the enemy on their ship to try to negotiate a cease-fire. His crew uses a kind of sensing technology to track his vital signs—like heart rate, breathing, body temperature—right up to the moment of his untimely demise.

While we’re not quite up to the technology level of the Star Trek universe, the ability to remotely sense what’s going on in tissues and organs is something of a holy grail for bioengineers. This is especially true for artificial or engineered organs: If you’d grown a new kidney for a patient needing a transplant, for example, you’d want some way to monitor it and make sure it’s working properly. It’s something that the body does naturally, but that bioengineers have struggled to replicate.

Read Full Story | Leave a Comment