Stories about: blood stem cells

Can blood cells be rebooted into blood stem cells?

Hematopoietic hierarchy blood development stem cells
The classic hematopoietic hierarchy. What if we could turn those arrows around?

Think, for a moment, of a cell as a computer, with its genome as its software, working to give cells particular functions. One set of genetic programs turns a cell into a heart cell, another set creates a neuron, still another a lymphocyte and so on.

The job of controlling which programs get booted up, and when, falls in part to transcription factors—genes that act like molecular switches to turn other genes on and off.

Derrick Rossi, PhD, spends a lot of his time thinking about transcription factors. A stem cell and blood development researcher in Boston Children’s Hospital’s Program in Cellular and Molecular Medicine, Rossi believes that transcription factors hold the power to achieve one of the most sought-after goals in regenerative medicine: producing, from other cell types, transplantable hematopoietic stem cells (HSCs).

“There are about 50,000 HSC transplants every year,” Rossi explains, noting that the success of a transplant is highly dependent on the number of cells a patient receives from her donor. “But HSCs only comprise about one in every 20,000 cells in the bone marrow.

“If we could generate autologous HSCs from a patient’s other cells,” he continues, “it could be transformative for transplant medicine and for our ability to model diseases of blood development.”

As they reported April 24 in Cell, Rossi and his collaborators have taken a significant step toward that goal: Using a cocktail of eight transcription factors, they reprogrammed mature mouse blood cells into what they have dubbed induced HSCs (iHSCs).

Read Full Story | Leave a Comment