Stories about: bone density

Citizen science: Genetic bone disease fuels a teen’s passion for research

citizen science

When I was just 3 months old, I was diagnosed with fibular hemimelia, a rare genetic condition that affects about 1 in 50,000 people. It manifests itself as the lack of the fibula bone, a key structural bone in the lower leg that provides major stability in the ankle and knee.

Fibular hemimelia leads to a severe leg length discrepancy — which, in my case, would have amounted to over 6 inches without treatment. Prior to my time at Boston Children’s Hospital, the go-to cure was amputation — replacing my lower leg with a series of prostheses.

Luckily, at the time of my diagnosis, leg-lengthening surgeries were just being approved in the U.S. My parents couldn’t bear to part with my leg, so over the course of 18 years, I have undergone 13 procedures to combat my leg-length difference, starting at age 5. This early exposure to the medical field, coupled with encouragement from teachers, led to a passion for science.

Read Full Story | Leave a Comment

Making bone make more bone

Femur bone cross sections from a wild type mouse and a high bone mass (HBM) mouse. The HBM mouse at right has a much larger bone cross section, with greater spacing between the dyes and evidence of trabecular bone in the marrow space.

Work your bones, get more bone. The link between exercise and bone density has been recognized for a long time. It works like this: As you work out, your muscles pull on your bones, causing strain. Cells embedded in the structure of your bones called osteocytes sense the strain and put out a call to other bone cells, osteoblasts, to start churning out proteins and minerals that make your bones denser and stronger. Which is why a history of load- or weight-bearing exercise can help prevent osteoporosis.

What if we could awaken osteocytes artificially, helping adults and children with brittle bone diseases make more of the bone they need? Scientists may be closing in on a way to do this, using a gene called Lrp5 that plays a key role in passing along the biochemical signals that translate strain into bone.

Read Full Story | 1 Comment | Leave a Comment