
A person born with a port-wine birthmark on his or her face and eyelid(s) has an 8 to 15 percent chance of being diagnosed with Sturge-Weber syndrome. The rare disorder causes malformations in certain regions of the body’s capillaries (small blood vessels). Port-wine birthmarks appear on areas of the face affected by these capillary malformations.
Aside from the visible symptoms of Sturge-Weber, there are also some more subtle and worrisome ones. Sturge-Weber syndrome can be detected by magnetic resonance imaging (MRI). Such images can reveal a telltale series of malformed capillaries in regions of the brain. Brain capillary malformations can have potentially devastating neurological consequences, including epileptic seizures.
Frustratingly, since doctors first described Sturge-Weber syndrome over 100 years ago, the relationship between brain capillary malformations and seizures has remained somewhat unexplained. In 2013, a Johns Hopkins University team found a GNAQ R183Q gene mutation in about 90 percent of sampled Sturge-Weber patients. However, the mutation’s effect on particular cells and its relationship to seizures still remained unknown.
But recently, some new light has been shed on the mystery. At Boston Children’s Hospital, Sturge-Weber patients donated their brain tissue to research after it was removed during a drastic surgery to treat severe epilepsy. An analysis of their tissue, funded by Boston Children’s Translational Neuroscience Center (TNC), has revealed the cellular location of the Sturge-Weber mutation. The discovery brings new hope of finding ways to improve the lives of those with the disorder. …