A microscopic view of human testis tissue. Researchers have discovered why males are more likely to get bladder cancer than females. IMAGE: ADOBE STOCK
New research helps explain why men are three to five times more likely to develop bladder cancer than women.
Using mouse models and human patient data, Boston Children’s Hospital researchers in the urology department, Xue Sean Li, PhD, and Satoshi Kaneko, PhD, found that inherent genomic differences contribute to the contrast in bladder cancer rate between males and females. …
Mikey and his family at his 11th birthday party, just one week after he was diagnosed with DIPG, a devastating tumor in his brain stem. Since Mikey’s passing in 2008, his family has been committed to supporting DIPG research.
“It’s a brutal disease; there’s just no other way to describe DIPG,” says Steve Czech. “And what’s crazy is that there aren’t many treatment options because it’s such a rare, orphan disease.”
Czech’s son, Mikey, was diagnosed with a diffuse intrinsic pontine glioma (DIPG) on Jan. 6, 2008. It was Mikey’s 11th birthday. The fast growing and difficult-to-treat brainstem tumors are diagnosed in approximately 300 children in the U.S. each year.
Sadly, the virtually incurable disease comes with a poor prognosis for most children. The location of DIPG tumors in the brainstem — which controls many of the body’s involuntary functions, such as breathing — has posed a huge challenge to successful treatment thus far.
“Typically, they give kids about nine months,” says Czech. “Our lives changed forever the day that Mikey was diagnosed.” …
Recently, the annual ASPHO (American Society for Pediatric Hematology/Oncology) meeting brought together more than 1,100 pediatric hematologists and oncologists, including a team from the Dana-Farber/Boston Children’s Cancers and Blood Disorders Center. Some of the delegates from Dana-Farber/Boston Children’s included:
Amy Billett, MD: president of ASPHO, director of safety and quality and a hematologist/oncologist at Dana Farber/Boston Children’s
Imaging of tumor cells. A new dataset, one of the largest of its kind, contains the genomic profiles of 1,215 pediatric tumors.
Childhood cancers are rare and account for about one percent of U.S. cancer diagnoses. They differ from adult tumors in that they often arise from many more diverse kinds of cells, including embryonal tissues, sex-cord stromal cells of the ovary or testis, the brain’s neural and glial cells and more.
Yet although improved tumor detection and treatment have increased survival rates for many different cancer subtypes, more than 1,900 children across the U.S. still lose their battle each year.
A new dataset — comprising the genomic profiles of a huge array of pediatric tumors — could help change that. …
Allison was the first pediatric brain tumor patient in the world to receive a treatment targeting the BRAF mutation, originally developed to treat adults with melanoma who have the same mutation.
Precision cancer medicine – the vision of tailoring diagnosis and treatments to a tumor’s genetic susceptibilities – is now ready to impact the care of a majority of children with brain tumors. The molecular “signatures” of brain tumors were first characterized in 2002 in a study led by researchers at Boston Children’s Hospital. This has led to the creation of new tumor subgroups and changes in cancer treatment: For example, a current clinical trial is testing the anti-melanoma drug dabrafenib in a variety of brain tumors with the same BRAF mutation – including metastatic anaplastic astrocytoma and low-grade glioma.
In the largest study of its kind to date, investigators at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center genetically tested more than 200 brain tumor samples. They found that many had genetic irregularities that could guide treatment, in some cases with approved drugs or agents being evaluated in clinical trials.
For some pediatric cancers, such as acute lymphoblastic leukemia, older forms of therapy — and older ways of defining who receives which therapy — have served well over the last few decades. But that approach is no longer sufficient. Revolutionary gains have been made in adult oncology using personalized genomic therapy — therapy based on matching treatments to the genetic makeup of a patient’s tumor. The time has come to take them to the pediatric space.
“It’s all about the patients,” says Katherine Janeway, MD, when asked about the motivations behind her efforts to bring precision medicine to pediatric oncology. But it’s more than that; the drive to combine science and care is in her blood. A solid tumor specialist and cancer genomics researcher at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Janeway is the sixth generation of her family to choose a scientific or medical path—not just as a career, but also as a form of service.