Stories about: cerebrospinal fluid

Probing the brain’s earliest development, with a detour into rare childhood cancers

In early brain development there is an increase in ribosomes, contained in these nucleoli
Nucleoli, the structures in the cell nucleus that manufacture ribosomes, are enlarged in very early brain development, indicating an increase in ribosome production. Here, a 3D reconstruction of individual nucleoli. (Kevin Chau, Boston Children’s Hospital)

In our early days as embryos, before we had brains, we had a neural fold, bathed in amniotic fluid. Sometime in the early-to-mid first trimester, the fold closed to form a tube, capturing some of the fluid inside as cerebrospinal fluid. Only then did our brains begin to form.

In 2015, a team led by Maria Lehtinen, PhD, Kevin Chau, PhD and Hanno Steen, PhD, at Boston Children’s Hospital, showed that the profile of proteins in the fluid changes during this time. They further showed that these proteins “talk” to the neural stem cells that form the brain.

In new research just published in the online journal eLife, Lehtinen and Chau shed more light on this little-known early stage of brain development.

Read Full Story | Leave a Comment

How amniotic and cerebrospinal fluids talk to the developing brain: proteomics

proteomics amniotic fluid cerebrospinal fluid brain development
Counterclockwise, from bottom left: In the earliest stage of nervous system development, the amniotic fluid is rich with proteins, shown as dots, that communicate with neural stem cells. As the neural tube closes and the brain takes shape, the proteins become fewer and less complex. (Hillary Mullan, Boston Children’s Hospital)

When we were developing in the womb, we were immersed in amniotic fluid. As our nervous systems formed, some of this fluid was trapped inside the neural tube, forming the cerebrospinal fluid that bathes our brains.

In the past, these fluids have been seen as a “cushion” or a place to dump waste products. But new research suggests that they actively participate in nervous system development.

Publishing this week in Developmental Cell, researchers led by Maria Lehtinen, PhD, and Kevin Chau in the Department of Pathology at Boston Children’s Hospital show that amniotic fluid and cerebrospinal fluid (CSF) contain rich portfolios of proteins that tell neural stem cells what to do — how to divide and what kinds of cells to make. They also show that the messages change in different phases of development.

Read Full Story | Leave a Comment