Stories about: chemotherapy

Trial shows chemotherapy is helping kids live with pulmonary vein stenosis

Magnification of pulmonary vein tissue showing signs of pulmonary vein stenosis (plump abnormal cells stained dark magenta).
Magnification of pulmonary vein tissue showing signs of pulmonary vein stenosis (plump abnormal cells stained dark magenta). Credit: Boston Children’s Hospital Department of Pathology

Pulmonary vein stenosis (PVS) is a rare disease in which abnormal cells build up inside the veins responsible for carrying oxygen-rich blood from the lungs to the heart. It restricts blood flow through these vessels, eventually sealing them off entirely if left untreated. Typically affecting young children, the most severe form of PVS progresses very quickly and can cause death within a matter of months after diagnosis.

Until recently, treatment options have been limited to keeping the pulmonary veins open through catheterization or surgery. Yet this approach only removes the cells but does nothing to prevent their regrowth. Now, a clinical trial shows that adding chemotherapy to a treatment regimen including catheterization and surgery can deter abnormal cellular growth and finally give children with PVS a chance to grow up.

Results of the trial, run by the Boston Children’s Hospital Pulmonary Vein Stenosis Program, were recently published in the Journal of Pediatrics.

“Through this approach, we’ve created the first-ever population of survivors who are living with severe PVS,” says Christina Ireland, RN, MS, FNP, who has managed enrolling patients in the trial and treating new patients since the trial ended. “We’ve changed this disease from an acute killer to a chronic, manageable condition.”

Read Full Story | Leave a Comment

News Note: Why is this eye cancer making headlines?

This illustrations shows a catheter is used during intra-arterial chemotherapy for retinoblastoma.
During intra-arterial chemotherapy for retinoblastoma, a catheter is placed into the common femoral artery and threaded through a child’s vasculature to access the blood vessel of the affected eye and deliver a concentrated dose of chemotherapy. Illustration: Dana-Farber/Boston Children’s.

Retinoblastoma is a rare cancer that originates in the retina, the tissue in the back of the eye that converts light into visual information that is interpreted by the brain.

One retinoblastoma symptom in particular is finding itself in the spotlight. With a rise in social media use in recent years, retinoblastoma has attracted media attention for being a type of cancer that can sometimes be detected through photographs. Across the internet, news stories like this one abound in which friends or relatives have alerted parents to the potential risk of eye cancer after noticing that a child’s pupil appears white instead of red — a symptom called leukocoria — on photos posted to social media.

Fortunately, with proper diagnosis and treatment, 95 percent of children diagnosed with retinoblastoma can be cured. What’s more, a catheter-based treatment approach is now sparing patients from some of the side effects that can be expected from more traditional therapies.

Read Full Story | Leave a Comment

Dulling cancer therapy’s double-edged sword: A new way to block tumor recurrence

An immune cell engulfs cancer cells
An immune cell engulfs tumor cells.

Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

The findings of the multi-institutional research team — including scientists from the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Beth Israel Deaconness Medical Center and the Institute for Systems Biology — contradict the conventional approach to treating cancer.

In their study, published in the January issue of the Journal of Experimental Medicine, the researchers describe how chemotherapy or other targeted therapies create a build-up of tumor cell debris, comprised of dead, fragmented cancer cells. In animal models, the team observed that this cell debris sets off an inflammatory cascade in the body and also encourages lingering, living cancer cells to develop into new tumors.

“Our findings reveal that conventional cancer therapy is essentially a double-edged sword,” says co-senior author on the study Mark Kieran, MD, PhD, who directs the Pediatric Brain Tumor Program at Dana-Farber/Boston Children’s and is an associate professor of pediatrics at Harvard Medical School. “But more importantly, we also found a pathway to block the tumor-stimulating effects of cancer cell debris — using a class of mediators called resolvins.”

Read Full Story | Leave a Comment

Do children with Down syndrome need modified chemo for leukemia? No, says study

leukemia down syndrome acute lymphoblastic leukemia

Clinicians have long known that children with Down syndrome carry an elevated risk of developing acute lymphoblastic leukemia (ALL), the most common pediatric cancer. Research consistently shows that children with Down syndrome are more likely to suffer complications from chemotherapy. At the same time, some studies have suggested that children with Down syndrome and ALL may have a higher chance of relapsing.

What to do with this knowledge has been a source of controversy. Should patients with ALL and Down syndrome receive treatment modified to minimize toxicity from chemotherapy? Or should they be given the same treatment as other children with ALL to minimize the chance for relapse? Recent study results from Dana-Farber/Boston Children’s Cancer and Blood Disorders Center suggest that full-dose chemo is preferable.

Read Full Story | Leave a Comment

Fertility preservation for children with cancer: What are the options?

sperm_and_egg__SebastianKaulitzki_shutterstock_1762515_800x500_Notes

More than 75 percent of children diagnosed with cancer are surviving into adulthood, leaving more and more parents to wonder: Will my child be able to have children down the road?

They’re right to be concerned. The cancer treatments that are so effective at saving children’s lives can themselves cause a host of problems that don’t manifest until years later. These late effects include particularly harsh impacts on fertility.

On our sister blog Notes, urologist Richard Yu, MD, PhD, of Boston Children’s Hospital and fertility specialist Elizabeth Ginsberg, MD, of Brigham and Women’s Hospital outline where the science of fertility preservation is going.

“It may take 15 or 20 years to develop the techniques to help a child who is 8 years old now,” notes Yu. “But if you don’t preserve something now, you run the risk of not being able to do anything for them later, which is where we are now with a large number of adults who survived childhood cancer.”

Read more about fertility preservation and childhood cancer on Notes.

 

Read Full Story | Leave a Comment

Targeting noncoding RNAs could be game-changing in childhood cancer: Triche

The war on pediatric cancer hasn’t been going so well in the past couple of decades, says Timothy Triche, MD, PhD, a cancer researcher at Children’s Hospital Los Angeles. The existing intensive chemotherapy regimens carry a lot of “unfortunate baggage” for children in terms of lifelong morbidity, and haven’t brought about a tremendous change in outcomes, he says.

“We really don’t have a lot of new drugs, if any, and we really don’t have new targets,” he said at Boston Children’s Hospital’s Global Pediatric Innovation Summit + Awards last month. “Underlying this is the fundamental problem that we don’t understand a lot more about childhood cancer than we did before.”

In a Discovery Roundup highlighting four big ideas in pediatric care, Triche made the case for targeting the genome’s “dark matter” — the vast number of RNAs made from the genome that do not code for proteins.

Read Full Story | Leave a Comment

Can old peripheral nerves learn new tricks? Only the Schwann cells know for sure

peripheral nerve injury

About six weeks ago, a glass shattered in my hand, severing the nerve in my pinky finger. The feeling in my fingertip still hasn’t returned, and now I know why: I’m too old.

Going back to World War II, it’s been speculated that recovery of peripheral nerve injuries—like those in limbs and extremities—is influenced by age. And studies indicate that peripheral neuropathy is common in people over 65, including those who have received cancer chemotherapy, and often unexplained.

“When you’re very young, the system is very plastic and able to regenerate,” Michio Painter told me recently. He is a graduate student in the laboratory of Clifford Woolf, PhD, director of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “After that, there’s a gradual decline. By the age of 30, much of this plasticity is gone.”

Traditionally, this decline has been thought to reflect age-related differences in neurons’ ability to regrow, but when Painter studied neurons in a dish, he couldn’t confirm this.

Read Full Story | Leave a Comment

Predicting cancer drug response: One or two genes don’t always tell the story

Measuring the total amount of DNA damage within a tumor’s cells could help doctors predict its vulnerability to drugs like cisplatin. (Haukeland universitetssjukehus/Flickr)

Drugs like cisplatin that break DNA are some of the strongest weapons we have against breast, ovarian and other cancers. The problem, common to every form of chemotherapy, is that cisplatin doesn’t work for everyone. Given the potential side effects that go along with the drug—including vomiting, hearing loss and muscle cramps, just to name a few—the decision to give it to a patient becomes something of a gamble: Does the benefit outweigh the risk?

There are tests that examine individual genes and which can give doctors a limited view as to which tumors might respond best to cisplatin. But a multicenter team co-led by Zoltan Szallasi, MD, of Boston Children’s Hospital’s Informatics Program (CHIP), thinks they may have a solution that looks beyond individual genes to see which tumors might succumb to cisplatin and other drugs like it.

Read Full Story | Leave a Comment

Unmasking brain tumors with gene therapy

Brain tumors like the diffuse, light gray one in this MRI do a remarkably good job of hiding from the immune system. A new treatment based on gene therapy could strip their camouflage away. (Filip Em/Wikimedia Commons)

If there’s anything that tumors are good at, it’s hiding themselves. Not from things like MRIs or CT scans, mind you, but from the immune system. Since a tumor grows from what were at one time normal, healthy cells it’s still “self,” still one of the tissues that makes you you.

“Tumor cells display very subtle differences that distinguish them from healthy cells, but by and large they look the same to your immune system,” says Mark Kieran, a pediatric neuro-oncologist at the Dana-Farber/Children’s Hospital Cancer Center and Children’s Hospital’s Vascular Biology Program. “The question is: How can we unmask tumors so that the immune system can do its job?”

Researchers have worked for years on cancer vaccines aimed at getting the immune system to wake up to the presence of a tumor and turn on it. With a Phase 1 safety trial , Kieran and his colleagues, including Children’s neurosurgical oncologist Lily Goumnerova, are evaluating a different strategy for patients with hard-to-treat brain tumors called malignant gliomas:  They’re giving the tumors a cold.

Read Full Story | Leave a Comment

The cell from hell: Can we outsmart cancer stem cells?

Cancer stem cells’ clever defenses may be the seeds of their undoing. (Image: leftover bacon/OpenClipArt)

Some scientists still debate the existence of cancer stem cells – rare cells that can singlehandedly perpetuate a tumor, and possibly make it more aggressive.  But others have moved on, isolating candidate cancer stem cells and documenting their distinctive characteristics and markers.

And some are starting to figure out how these cells operate and leverage that knowledge to come up with new approaches to cancer therapy.

Children’s scientist Markus Frank has been building quite a dossier on cancer stem cells, starting with melanoma stem cells. “Many of the features that make a cancer bad seem to be localized in this subpopulation of cells,” he says.

Read Full Story | Leave a Comment