Stories about: Christos Papadelis

Fast brain waves: A better biomarker for epilepsy

EEG and MEG detection of HFOs, fast brain waves associated with epilepsy
Localization of fast brain waves, called HFOs, with scalp EEG (left) and MEG (right). HFOs present a new biomarker for areas of the brain responsible for epileptic seizures.

In the U.S., about one in 100 people have some form of epilepsy. A third of those people have seizures that cannot be controlled with drugs, eventually requiring surgery to remove the area of their brain tissue that is triggering seizure activity.

“If you can identify and surgically remove the entire epileptogenic zone, you will have a patient who is seizure-free,” says Christos Papadelis, PhD, who leads the Boston Children’s Brain Dynamics Laboratory in the Division of Newborn Medicine and is an assistant professor in pediatrics at Harvard Medical School.

At present, however, these surgeries are not always successful. Current diagnostics lack the ability to determine precisely which parts of an individual’s brain are inducing his or her seizures, called the epileptogenic zone. In addition, robust biomarkers for the epileptogenic zone have been poorly established.

But now, a team at Boston Children’s Hospital is doing research to improve pre-surgical pinpointing of the brain’s epileptogenic zone. They are using a newly-established biomarker for epilepsy — fast brain waves called high-frequency oscillations (HFOs) — that can be detected non-invasively using scalp electroencephalography (EEG) and magnetoencephalography (MEG).

Read Full Story | Leave a Comment

Science seen: Mapping touch perception in cerebral palsy

sensory brain mapping in cerebral palsy

Cerebral palsy (CP) is the most common motor disability of childhood. The brain injury causing CP disrupts touch perception, a key component of motor function. In this brain image from a child with CP (click to enlarge), the blue lines show nerve fibers going to the sensory cortex. The colored cubes at the top represent the parts of the sensory cortex receiving touch signals from the thumb (red cube), middle finger (blue) and little finger (green). An injury in the right side of the brain (dark area) has reduced the number of nerve fibers on that side, reducing touch sensation in the left hand and resulting in weakness.

Christos Papadelis, PhD, of Boston Children’s Hospital’s Division of Newborn Medicine hopes to use such sensory mapping information to develop better rehabilitation therapies. P. Ellen Grant, MD, director of the Fetal-Neonatal Neuroimaging and Developmental Science Center, Brian Snyder, MD, of the Cerebral Palsy Program and research assistant Madelyn Rubenstein are part of the team.

 

Read Full Story | Leave a Comment