Stories about: citizen science

SPG47: When rare disease research gets a push from parents

SPG47 citizen science
Robbie’s parents are spurring scientific research into her ultra-rare neurodegenerative disorder.

Spastic Paraplegia 47 doesn’t roll off the tongue. The name is complicated and challenging, much like SPG47 itself. When I tell healthcare providers my 3-year-old daughter’s diagnosis, I take a deep breath and wait for the inevitable question: What, exactly, is that?

More than 70 types of Hereditary Spastic Paraplegia (HSP) have been identified to date; almost all are neurodegenerative. At best, HSP causes distress and disruption; at worst, it has devastating, potentially life-threatening consequences. Its “pure” form impairs the lower extremities, causing extreme spasticity and weakness. Its “complicated” form — like our daughter Robbie’s — also impacts systemic and/or neurologic function. Many HSP sub-types have been diagnosed in only a handful of people worldwide, leaving affected families feeling lost and disconnected.

Read Full Story | Leave a Comment

With no time to lose, parents drive CMT4J gene therapy forward

CMT4J
Talia Duff’s disorder, CMT4J, is a rare form of Charcot-Marie-Tooth. It has been modeled in mice that will soon undergo a test of gene therapy, largely through her parents’ behind-the-scenes work.

In honor of Rare Disease Day (Feb. 28), we salute “citizen scientists” Jocelyn and John Duff.

When Talia Duff was born, her parents realized life would be different, but still joyful. They were quickly adopted by the Down syndrome parent community and fell in love with Talia and her bright smile.

But when Talia was about four, it was clear she had a true problem. She started losing strength in her arms and legs. When she got sick, which was often, the weakness seemed to accelerate.

Talia was initially diagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), an autoimmune disease in which the body attacks its own nerve fibers. Treated with IV immunoglobulin infusions to curb the inflammation, she seemed to grow stronger — but only for a time. Adding prednisone, a steroid, seemed to help. But it also caused bone loss, and Talia began having spine fractures.

“We tried a lot of different things, but she never got 100 percent better,” says Regina Laine, NP, who has been following Talia in Boston Children’s Hospital’s Neuromuscular Center the past several years, together with Basil Darras, MD.That’s when we decided to readdress the possibility that it was genetic.”

Read Full Story | Leave a Comment

Honoring rare disease ‘citizen scientists’

citizen scientists

The global theme of this year’s Rare Disease Day (February 28) is research, and in keeping with that, we salute a very important group of people: citizen scientists. These can-do patients and family members are putting previously undiagnosed rare diseases on the map and driving the search for treatments. Citizen scientists play multiple roles: They keep scientists focused on therapeutic development, conduct online research to connect ideas, set up patient networks and data registries, raise money and start companies. They’ve earned a voice in clinical trial design and were instrumental in the passage of the 21st Century Cures Act.

Meet a few citizen scientists who have inspired us recently.

Read Full Story | Leave a Comment

Citizen science: Genetic bone disease fuels a teen’s passion for research

citizen science

When I was just 3 months old, I was diagnosed with fibular hemimelia, a rare genetic condition that affects about 1 in 50,000 people. It manifests itself as the lack of the fibula bone, a key structural bone in the lower leg that provides major stability in the ankle and knee.

Fibular hemimelia leads to a severe leg length discrepancy — which, in my case, would have amounted to over 6 inches without treatment. Prior to my time at Boston Children’s Hospital, the go-to cure was amputation — replacing my lower leg with a series of prostheses.

Luckily, at the time of my diagnosis, leg-lengthening surgeries were just being approved in the U.S. My parents couldn’t bear to part with my leg, so over the course of 18 years, I have undergone 13 procedures to combat my leg-length difference, starting at age 5. This early exposure to the medical field, coupled with encouragement from teachers, led to a passion for science.

Read Full Story | Leave a Comment

Mom-entrepreneur forms gene therapy company to tackle Sanfilippo syndrome

Karen and Ornella Aiach Sanfilippo gene therapy

Sanfilippo syndrome A is a neurodegenerative condition caused by a genetic error in metabolism: because of a missing enzyme, long-chained sugar molecules cannot be broken down. Toxic substrates accumulate in cells, causing a rapid cognitive decline and, later, motor decline. Most affected children die in their teens or earlier.

There is no treatment, and when Karen Aiach’s daughter Ornella was diagnosed with Sanfilippo syndrome A, no companies were even working on the disease.

As a mother, Aiach could not accept that.

Read Full Story | Leave a Comment

From NICU dad to citizen scientist: Creating a smart pulse oximeter

Morris Family
Jon and Sarah Morris with 7-year-old twins Drew and Emma

When Sarah and Jon Morris’ twins were born nine weeks early, they embarked on a journey largely dictated by their children’s medical needs. While son Drew was thriving, daughter Emma was severely compromised and was transferred to Boston Children’s Hospital’s Neonatal Intensive Care Unit (NICU). “We felt powerless,” remembers Jon. “Every time we thought we had made progress, we had a setback. It’s always two steps forward, one step back in the NICU. That backwards step always hit the hardest.”

After 296 days at Boston Children’s, Emma went home tethered to breathing and feeding tubes. The Morrises had a pulse oximeter at home to regularly test Emma’s blood oxygen level.

There were frustrating limitations to Emma’s oximeter:

Read Full Story | Leave a Comment

Creating a blueprint for rare disease medicine

blueprint for rare disease medicinePresident Obama’s Precision Medicine Initiative, first laid out in his 2015 State of Union Address, aims to develop individualized care that empowers patients and takes into account genetic, environmental and lifestyle differences. Obama is asking Congress for $309 million for the initiative next year.

One big component is the Department of Veteran Affairs’ Million Veteran Program, which has signed up more than 450,000 veterans to date and is now open to active-duty military personnel. Another is NIH support for cancer trials that match treatments with patients’ genomic profiles.

Parent/citizen scientist Matt Might has in mind another group: patients with undiagnosed genetic disorders. In searching for a diagnosis for his son Bertrand, Might came up with a precision medicine algorithm that outlines step by step what a patient and family can do — from genomic sequencing to finding similar patients to working with biomedical researchers to find therapeutic strategies. It’s an impressively comprehensive blueprint for citizen science.

As Might detailed today at a White House summit on the Precision Medicine Initiative, he now has worms at the University of Utah modeling his son’s disease, whose symptoms include seizures, extreme developmental delay and an inability to make tears. He also has a molecular target and a list of 70 compounds that hit it, including 14 that are already approved by the FDA.

Can Might’s vision be scaled and made part of routine medical care, keeping the patient front and center?

Read Full Story | Leave a Comment

3-D printed hearts of hope

Jason Ayres Patrick and Emani cropped
Jason Ayres with son Patrick, Dr. Emani, and Patrick’s 3-D printed heart

Jason Ayres, a family doctor in Alabama, was speechless as he held his adopted son Patrick’s heart in his hands. Well, a replica of his son’s heart — an exact replica, 3-D printed before the 3-year-old boy had lifesaving open-heart surgery.

Patrick was one of the first beneficiaries of 3-D printing technology at Boston Children’s Hospital, which last year helped open a new frontier in pediatric cardiac surgery. Patrick was born with numerous cardiac problems; in addition to double outlet right ventricle and a complete atrioventricular canal defect, his heart lay backwards in his chest.

“We knew early on that he’d need complex surgery to survive,” says Jason.

Finely detailed models of Patrick’s heart created by the Simulator Program at Boston Children’s gave surgeon Sitaram Emani, MD, at the Boston Children’s Heart Center an up-close-and-personal look at his complex cardiac anatomy.

Read Full Story | Leave a Comment

Hillary Savoie: Parents as citizen scientists

hillary-and-esme
The author with 3-year-old Esmé at their home in New York. (Tracey Buyce Photography)

In my last post I explained the genetic testing process that led to my daughter Esmé receiving results of two mutations of unknown significance. One, on the gene PCDH19, was discovered in 2012 with the GeneDx infantile epilepsy panel. The other, on SCN8A, was found with whole exome sequencing, also through GeneDx, in 2014.

When we received the SCN8A result, I was fascinated by the notion that it would have been included in our original epilepsy panel had we only waited a handful of months. In fact, in the time since Esmé’s original test in 2012, almost 20 new genes have been added to the GeneDx Infantile Epilepsy panel.

Read Full Story | Leave a Comment

When your child isn’t just rare, but probably one of a kind

Savoie at home with 4-year-old Esmé in New York.
Savoie at home with 4-year-old Esmé in New York.

Hillary Savoie, PhD, founder and director of The Cute Syndrome Foundation, is author of Around And Into The Unknown, chronicling her family’s journey to find a diagnosis for Esmé, and Whoosh, about coming to terms with Esmé’s early medical complications.

I think my daughter Esmé is extraordinarily unique—from her tiny pudgy feet that she likes to stuff in her mouth to her beautifully lashed blue eyes and outrageously untamed hair. It’s a mom thing. I guess it is a symptom of loving another person more than life itself.

But my daughter is also unusual in a more scientific way: in her genes. 

Read Full Story | Leave a Comment