Stories about: Division of Gastroenterology

Virtual reality tool lets kids voyage through their own bodies

HealthVoyager - stomach
Traditionally, doctors share the findings of invasive tests using printouts that are highly text-based and filled with medical jargon. Some may have static thumbnail illustrations, but all in all they’re not especially patient friendly.

Michael Docktor, MD, a pediatric gastroenterologist at Boston Children’s Hospital, believed that if kids could really “see” inside themselves, they would have a better understanding of their disease and be more engaged in their treatment.

He connected with Klick Health, a health marketing and commercialization agency that develops digital solutions. Together, they created an entertaining “virtual reality” educational experience. It allows the physician to easily recreate a patient’s actual endoscopic procedure, and, like the Magic School Bus, enables kids to virtually tour their own bodies.

Boston Children’s and Klick Health officially unveiled the iPhone-friendly VR tool, called HealthVoyagerTM, in New York today.

Read Full Story | Leave a Comment

‘Pull’ from an implanted robot could help grow stunted organs

Surgeons at Boston Children’s Hospital have long sought a better solution for long-gap esophageal atresia, a rare birth defect in which part of the esophagus is missing. The current state-of-the art operation, called the Foker process, uses sutures anchored to children’s backs to gradually pull the unjoined ends of esophagus until they’re long enough to be stitched together. To keep the esophagus from tearing, children must be paralyzed in a medically induced coma, on mechanical ventilation, for one to four weeks. The lengthy ICU care means high costs, and the long period of immobilization can cause complications like bone fractures and blood clots.

Now, a Boston Children’s Hospital team has created an implantable robot that could lengthen the esophagus — and potentially other tubular organs like the intestine — while the child remains awake and mobile. As described today in Science Roboticsthe device is attached only to the tissue being lengthened, so wouldn’t impede a child’s movement.

Read Full Story | Leave a Comment

How do cells release IL-1? The answer packs a punch, and could enable better vaccines

In hyperactivated immune cells, gasdermin D punches holes in the cell membrane that let IL-1 out — without killing the cell.

Interleukin-1 (IL-1), first described in 1984, is the original, highly potent member of the large family of cellular signaling molecules called cytokines that regulate immune responses and inflammation. It’s a key part of our immune response to infections, and also plays a role in autoimmune and inflammatory diseases. Several widely used anti-inflammatory drugs, such as anakinra, block IL-1 to treat rheumatoid arthritis, systemic inflammatory diseases, gout and atherosclerosis. IL-1 is also a target of interest in Alzheimer’s disease.

Yet until now, no one knew how IL-1 gets released by our immune cells.

“Most proteins have a secretion signal that causes them to leave the cell,” says Jonathan Kagan, PhD, an immunology researcher in Boston Children’s Hospital’s Division of Gastroenterology. “IL-1 doesn’t have that signal. Many people have championed the idea that IL-1 is passively released from dead cells: you just die and dump everything outside.”

Read Full Story | Leave a Comment