Stories about: Division of Genetics and Genomics

Late-breaking mutations may play an important role in autism

somatic mutations in autism may occur at different times in the embryo
Post-zygotic mutations, which arise spontaneously in an embryonic cell after sperm meets egg, are important players in autism spectrum disorder, a large study suggests.

Over the past decade, mutations to more than 60 different genes have been linked with autism spectrum disorder (ASD), including de novo mutations, which occur spontaneously and aren’t inherited. But much of autism still remains unexplained.

A new study of nearly 6,000 families implicates a hard-to-find category of de novo mutations: those that occur after conception, and therefore affect only a subset of cells. Findings were published today in Nature Neuroscience.

Read Full Story | Leave a Comment

What genetic changes gave us the human brain? A $10 million center aims to find out

genes and human brain evolution

How did our distinctive brains evolve? What genetic changes, coupled with natural selection, gave us language? What allowed modern humans to form complex societies, pursue science, create art?

While we have some understanding of the genes that differentiate us from other primates, that knowledge cannot fully explain human brain evolution. But with a $10 million grant to some of Boston’s most highly evolved minds in genetics, genomics, neuroscience and human evolution, some answers may emerge in the coming years.

The Seattle-based Paul G. Allen Frontiers Group today announced the creation of an Allen Discovery Center for Human Brain Evolution at Boston Children’s Hospital and Harvard Medical School. It will be led by Christopher A. Walsh, MD, PhD, chief of the Division of Genetics and Genomics at Boston Children’s and a Howard Hughes Medical Institute investigator.

“To understand when and how our modern brains evolved, we need to take a multi-pronged approach that will reflect how evolution works in nature, and identifies how experience and environment affect the genes that gave rise to modern human behavior,” Walsh says.

Read Full Story | Leave a Comment

Two resilient dogs point to new targets for Duchenne muscular dystrophy

Duchenne muscular dystrophy protective genes
Suflair, at right, is alive and well at 11 years despite having the DMD mutation (courtesy Natássia Vieira)

Two golden retrievers that had the genetic mutation for Duchenne muscular dystrophy (DMD), yet remained healthy, have offered up yet another lead for treating this muscle-wasting disorder.

For several years, Natássia Vieira, PhD, of the University of São Paolo, also a fellow in the Boston Children’s Hospital lab of Louis Kunkel, PhD, has been studying a Brazilian colony of golden retrievers. All have the classic DMD mutation and, as expected, most of these dogs are very weak and typically die by 2 years of age. That’s analogous to children with DMD, who typically lose the ability to walk by adolescence and die from cardiorespiratory failure by young adulthood.

But two dogs appeared unaffected. Both ran around normally. The elder dog, Ringo, lived a full lifespan, and his son Suflair is still alive and well at age 11.

Read Full Story | Leave a Comment