Stories about: Division of Nephrology

Pre-treated blood stem cells reverse type 1 diabetes in mice

autoimmune attack in type 1 diabetes
In type 1 diabetes, autoreactive T-cells (like the one in yellow) attack insulin-producing beta cells in the pancreas. What if blood stem cells could be taught to neutralize them? (Image: Andrea Panigada)

Type 1 diabetes is caused by an immune attack on the pancreatic beta cells that produce insulin. To curb the attack, some researchers have tried rebooting patients’ immune systems with an autologous bone-marrow transplant, infusing them with their own blood stem cells. But this method has had only partial success.

New research in today’s Science Translational Medicine suggests a reason why.

“We found that in diabetes, blood stem cells are defective, promoting inflammation and possibly leading to the onset of disease,” says Paolo Fiorina, MD, PhD, of Boston Children’s Hospital, senior investigator on the study.

But they also found that the defect can be fixed — by pre-treating the blood stem cells with small molecules or with gene therapy, to get them to make more of a protein called PD-L1.

In experiments, the treated stem cells homed to the pancreas and reversed hyperglycemia in diabetic mice, curing almost all of them of diabetes in the short term. One third maintained normal blood sugar levels for the duration of their lives.

Read Full Story | Leave a Comment

Galloway-Mowat mutations have dual target: kidney cells, neurons

Evidence of disease in GAMOS patients
Disease phenotype of GAMOS patients. Left: Kidney cells show signs of nephrotic syndrome. Right: Anomalies in brain development

With the help of more than 100 clinical collaborators around the world, Friedhelm Hildebrandt, MD has received thousands of blood samples from patients with nephrotic syndrome. They have helped Hildebrandt’s lab determine several underlying causes of this serious kidney disorder, in which high levels of protein are expelled in the urine.

“Nephrotic syndrome is not one disease; in fact, we already know that it is 55 different diseases,” says Hildebrandt, chief of the Division of Nephrology at Boston Children’s Hospital.

Over the course of time, Hildebrandt’s lab has discovered 35 of the more than 55 genes that can cause nephrotic syndrome. Identifying the different genetic pieces of the puzzle can help tailor a precision medicine approach to treating patients.

The latest piece, published earlier this month in Nature Genetics, is a set of four single-gene mutations that cause Galloway-Mowat syndrome (GAMOS) a rare disorder causing early-onset nephrotic syndrome and, often, microcephaly (abnormally small head size). Until now, the genetic changes underlying GAMOS and why they affect two disparate organs — the brain and kidney — have not been well understood. 

Read Full Story | Leave a Comment