Stories about: FM Kirby Neurobiology Center

Inhibiting inhibitory neurons gets mice with spinal cord injury to walk again

Boosting KCC2 expression as a treatment for spinal cord injury
Boosting KCC2 expression: A cross section of a mouse spinal cord, stained two different ways, showing increased expression of KCC2 in inhibitory neurons. This increased expression, induced genetically or with a small-molecule drug, correlated with improved motor function, including ankle movement and stepping. (Zhigang He Lab)

Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn’t completely severed. Why don’t the spared portions of the spinal cord keep working, allowing at least some movement? A new study just published online by Cell provides insight into why these nerve pathways remain quiet. Most intriguingly, it shows that injection with a small-molecule compound can revive these circuits in paralyzed mice — and get them walking again.

“We saw 80 percent of mice treated with this compound recover their stepping ability,” says Zhigang He, PhD, of Boston Children’s Hospital’s F.M. Kirby Neurobiology Center, the study’s senior investigator. “For this fairly severe type of spinal cord injury, this is the most significant functional recovery we know of.”

Read Full Story | Leave a Comment

Deconstructing neuropathic pain: Could it give clues to better drugs?

neuropathic pain

Neuropathic pain is chronic pain originating through some malfunction of the nervous system, often triggered by an injury. It causes hypersensitivity to innocuous stimuli and is often extremely debilitating. It doesn’t respond to existing painkillers — even opioids can’t reach it well.

New research in a mouse model, described last week in Cell Reports, deconstructed neuropathic pain and could offer new leads for treating it. The carefully done study showed that two major neuropathic pain symptoms in patients — extreme touch sensitivity and extreme cold sensitivity — operate through separate pathways.

“We think this separation will allow targeted drug-based therapies in the future,” says Michael Costigan, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, who was the study’s senior investigator. “If our results stand experimental scrutiny by others, this will be profoundly important in our overall understanding of neuropathic pain.”

Read Full Story | Leave a Comment

Opening up brain critical periods: Lynx1 and where sensory information meets context

auditory critical periods involve neurons in levels 1 and 4 of the auditory cortex
Interneurons (white) from layer 1 (L1) of the auditory cortex descend to contact parvalbumin cells (red) in layer 4. (Images courtesy Hensch Lab).

Babies’ brains are like sponges — highly tuned to incoming sensory information and readily rewiring their circuits. But when so-called critical periods close, our brains lose much of this plasticity. Classic experiments reveal this in the visual system: when kittens and mice had one eye covered shortly after birth, that eye was blind for life, even after the covering was removed. The brain never learned to interpret the visual inputs.

In 2010, a study led by Takao Hensch, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, showed that levels of a protein called Lynx1 rise just as the critical period for visual acuity closes. When the researchers deleted the Lynx1 gene in mice, the critical period reopened and mice recovered vision in the blind eye.

A new study this week in Nature Neuroscience extends Lynx1’s role to the auditory system.

“If we remove Lynx1, the auditory critical period stays open longer,” says Hensch.

Equally important, the study pinpoints the location in the brain where sensory inputs combine with another essential ingredient: what neuroscientists call context.

Read Full Story | Leave a Comment

Sensing light without sight: The visual system’s ‘third eye’

ipRGCs provide non-image vision, responding to light independently of rods and cones
Intrinsically photosensitive retinal ganglion cells, rich in melanopsin, respond to light independently of rods and cones. (Courtesy Elliott Milner, PhD)

Michael Tri H. Do, PhD, is an investigator in the F.M. Kirby Neurobiology Center at Boston Children’s Hospital and an assistant professor of neurology at Harvard Medical School.

Light affects us even without impinging on our awareness. In 1995, Charles Czeisler and colleagues at Harvard Medical School described people who lacked visual perception due to retinal degeneration, but nevertheless responded to light subconsciously — despite being blind, their melatonin level was suppressed, and they appeared to synchronize their circadian clock with the solar day. Across the pond at Oxford, Russell Foster and colleagues were finding the same in mice, and learned that these responses began in the eye.

These discoveries spurred an intense research effort that continues to this day. What system confers subconscious sight, and how does it differ from the system that generates visual experience?

Read Full Story | Leave a Comment

Can rare pain syndromes point the way to new analgesics?

analgesic drug discovery could reduce prescription opioid use
Boston Children’s Hospital and Amgen will collaborate to discover and accelerate non-addicting pain drugs.

As the opioid epidemic deepens and drug overdoses increase, effective non-addicting painkillers are desperately needed. Efforts to discover new pain pathways to target with new drugs have thus far had little success. Other promising research is investigating triggerable local delivery systems for non-opioid nerve blockers, but it’s still in the early stages.

A new collaboration between Boston Children’s Hospital and the biopharmaceutical company Amgen is aimed at accelerating new pain treatments. Announced yesterday, it will revolve around patients with rare, perplexing pain syndromes. The scientists hope that the genetic variants they find in these patients will shed new light on pain biology and lead to new ways of controlling pain. 

Read Full Story | Leave a Comment

How do we sense moonlight? Daylight? There’s a cell for that

environmental light sensing must span a wide spectrum of light intensities

To run our circadian clocks, regulate sleep and control hormone levels, we rely on light-sensing neurons known as M1 ganglion cell photoreceptors. Separate from the retina’s rods and cones, M1 cells specialize in “non-image” vision and function even in people who are blind.

Reporting in today’s Cell, neuroscientists at Boston Children’s Hospital describe an unexpected system that M1 cells use to sense changing amounts of environmental illumination. They found that the cells divvy up the job, with particular neurons tuned to different ranges of light intensity.

“As the earth turns, the level of illumination ranges across many orders of magnitude, from starlight to full daylight,” says Michael Do, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, senior author on the paper. “How do you build a sensory system that covers such a broad range? It seems like a straightforward problem, but the solution we found was a lot more complex than expected.”

Read Full Story | Leave a Comment

Novel therapeutic cocktail could restore fine motor skills after spinal cord injury and stroke

CST axons sprout from intact to injured side
Therapeutic mixture induces sprouting of axons from healthy (L) into the injured (R) side of the spinal cord.

Neuron cells have long finger-like structures, called axons, that extend outward to conduct impulses and transmit information to other neurons and muscle fibers. After spinal cord injury or stroke, axons originating in the brain’s cortex and along the spinal cord become damaged, disrupting motor skills. Now, reported today in Neuron, a team of scientists at Boston Children’s Hospital has developed a method to promote axon regrowth after injury.

Read Full Story | Leave a Comment

Optic nerve regeneration: One approach doesn’t fit all

alpha retinal ganglion cells optic nerve regeneration
Alpha-type retinal ganglion cells (RGCs) in part of an intact mouse retina. The cell axons lead to the optic nerve head (top right) and then exit into the optic nerve. The alpha RGCs are killed by the transcription factor SOX11 despite its pro-regenerative effect on other types of RGCs. (Fengfeng Bei)

Getting a damaged optic nerve to regenerate is vital to restoring vision in people blinded through nerve trauma or disease. A variety of growth-promoting factors have been shown to help the optic nerve’s retinal ganglion cells regenerate their axons, but we are still far from restoring vision. A new study published yesterday in Neuron underscores the complexity of the problem.

A research team led by Fengfeng Bei, PhD, of Brigham and Women’s Hospital, Zhigang He, PhD, and Michael Norsworthy, PhD, of Boston Children’s Hospital, and Giovanni Coppola, MD, of UCLA conducted a screen for transcription factors that regulate the early differentiation of RGCs, when axon growth is initiated. While one factor, SOX11, appeared to be critical in helping certain kinds of RGCs regenerate their axons, it simultaneously killed another type — alpha-RGCS (above)— when tested in a mouse model.

At least 30 types of retinal ganglion cell message the brain via the optic nerve. “The goal will be to regenerate as many subtypes of neurons as possible,” says Bei. “Our results here suggest that different subtypes of neurons may respond differently to the same factors.”

Read Full Story | Leave a Comment

To address chronic pain, you need to address sleep

chronic pain
Acute or chronic sleep loss exacerbates pain, finds a study that kept mice awake for long periods by entertaining them.

The ongoing opioid epidemic underscores the dire need for new pain medications that aren’t addicting. New research published today in Nature Medicine suggests a possible avenue of relief for people with chronic pain: simply getting more sleep, or, failing that, taking medications to promote wakefulness.

In an unusually rigorous mouse study, either approach relieved pain better than ibuprofen or even morphine. The findings reveal an unexpected role for alertness in setting pain sensitivity.

Read Full Story | 1 Comment | Leave a Comment

Impaired recycling of mitochondria in autism?

mitochondria in autism tuberous sclerosis

A study of tuberous sclerosis, a syndrome associated with autism, suggests a new treatment approach that could extend to other forms of autism.

The genetic disorder tuberous sclerosis complex (TSC) causes autism in about half of the children affected. Because its genetics are well defined, TSC offers a window into the cellular and network-level perturbations in the brain that lead to autism. A study published today by Cell Reports cracks the window open further, in an intriguing new way. It documents a defect in a basic housekeeping system cells use to recycle and renew their mitochondria.

Mitochondria are the organelles responsible for energy production and metabolism in cells. As they age or get damaged, cells digest them through a process known as autophagy (“self-eating”), clearing the way for healthy replacements. (Just this month, research on autophagy earned the Nobel Prize in Physiology or Medicine.)

Mustafa Sahin, MD, PhD, Darius Ebrahimi-Fakhari, MD, PhD, and Afshin Saffari, in Boston Children’s Hospital’s F.M. Kirby Neurobiology Center now report that autophagy goes awry in brain cells affected by TSC. But they also found that two existing medications restored autophagy: the epilepsy drug carbamazepine and drugs known as mTOR inhibitors. The findings may hold relevance not just for TSC but possibly for other forms of autism and some other neurologic disorders.

Read Full Story | Leave a Comment