Stories about: FM Kirby Neurobiology Center

Drug ‘cocktail’ could restore vision in optic nerve injury

regenerating optic nerves cropped
Gene therapy achieved extensive optic nerve regeneration, as shown in white, but adding a potassium channel blocking drug was the step needed to restore visual function. In the future, it might be possible to skip gene therapy and inject growth factors directly. (Fengfeng Bei, PhD, Boston Children’s Hospital)

When Zhigang He, PhD, started a lab at Boston Children’s Hospital 15 years ago, he hoped to find a way to regenerate nerve fibers in people with spinal cord injury. As a proxy, he studied optic nerve injury, which causes blindness in glaucoma — a condition affecting more than four million Americans — and sometimes in head trauma.

By experimenting with different growth-promoting genes and blocking natural growth inhibitors, he was able to get optic nerve fibers, or axons, to grow to greater and greater lengths in mice. But what about vision? Could the animals see?

Read Full Story | 63 Comments | Leave a Comment

Behind the scenes in the brain: The work and life of Beth Stevens, PhD

As far back as she can remember, neuroscientist Beth Stevens, PhD, of the Boston Children’s Hospital Department of Neurology and the F.M. Kirby Neurobiology Center, has loved science. The concept of a career in the field began to take root in high school, nurtured in part by her biology teacher — a scientist on the side — who was both encouraging and inspiring.

Today, Stevens, winner of the 2015 MacArthur “genius” grant for her groundbreaking research on microglia cells, is doing her part to inspire a new generation of scientists and show them, as she says, “Scientists aren’t just nerdy guys in white coats.”

Hover over the objects in Stevens’s office to learn more about her work, life and innovations, and read more about her science.

Read Full Story | 1 Comment | Leave a Comment

Beth Stevens: A transformative thinker in neuroscience

When 2015 MacArthur “genius” grant winner Beth Stevens, PhD, began studying the role of glia in the brain in the 1990s, these cells—“glue” from the Greek—weren’t given much thought. Traditionally, glia were thought to merely protect and support neurons, the brain’s real players.

But Stevens, from the Department of Neurology and the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, has made the case that glia are key actors in the brain, not just caretakers. Her work—at the interface between the nervous and immune systems—is helping transform how neurologic disorders like autism, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease and schizophrenia are viewed.

Read Full Story | Leave a Comment

Proteomics provides new leads into nerve regeneration

Nerve regeneration. From Santiago Ramón y Cajal’s “Estudios sobre la degeneración y regeneración del sistema nervioso” (1913-14). Via Scholarpedia.

nerve regeneration proteomicsFirst in a two-part series on nerve regeneration. Read part 2

Researchers have tried for a century to get injured nerves in the brain and spinal cord to regenerate. Various combinations of growth-promoting and growth-inhibiting molecules have been found helpful, but results have often been hard to replicate. There have been some notable glimmers of hope in recent years, but the goal of regenerating a nerve fiber enough to wire up properly in the brain and actually function again has been largely elusive.

“The majority of axons still cannot regenerate,” says Zhigang He, PhD, a member of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “This suggests we need to find additional molecules, additional mechanisms.”

Microarray analyses—which show what genes are transcribed (turned on) in injured nerves—have helped to some extent, but the plentiful leads they turn up are hard to analyze and often don’t pan out. The problem, says Judith Steen, PhD, who runs a proteomics lab at the Kirby Center, is that even when the genes are transcribed, the cell may not actually build the proteins they encode.

That’s where proteomics comes in. “By measuring proteins, you get a more direct, downstream readout of the system,” Steen says.

Read Full Story | Leave a Comment