Stories about: Fragile X syndrome

Autism clinical trials are ripe for improvement

Did arbaclofen really fail in autism and fragile X?
Did arbaclofen really fail in autism and fragile X?

Walter Kaufmann, MD, is co-director of the Fragile X Syndrome Program and a member of the department of Neurology at Boston Children’s Hospital. He was site principal investigator for three arbaclofen trials sponsored by Seaside Therapeutics and currently advises the company on data analyses. This post is second in a two-part series on clinical trials in autism spectrum disorders. (Read part 1)

The outcomes of drug trials in autism spectrum disorder (ASD) have, to date, been mixed. While atypical neuroleptic drugs have been effective for treating disruptive behavior in people with autism and are FDA-approved for that purpose, no available psychotropic drug has improved the core symptoms of ASD, such as social interaction deficits or stereotypic behaviors.

The heterogeneity—diversity—of ASD in both causes and symptoms may explain treatment failures to some extent. However, we have also lacked drugs targeting the brain mechanisms that underlie ASD. For this reason, targeted trials in fragile X syndrome, informed by neurobiology, have raised hopes of finally addressing core autistic symptoms.

Fragile X syndrome is a genetic disorder in which ASD occurs in 15 to 40 percent of cases. Initial results from a Phase 2 trial using the GABA-B agonist arbaclofen demonstrated relatively selective improvements in social avoidance in a wide age-range sample of subjects.

Read Full Story | Leave a Comment

A match made in heaven: The Children’s/MIT Research Enterprise

Crossing the river has had benefits that go back decades (Roger Wollstadt/Flickr, 1975)

It’s inspiring to see what happens when a hospital dedicated to providing the best treatments for children partners with a world-class technology and engineering institution.  Children’s Hospital Boston and MIT have embarked upon an exciting program of collaboration and cross-fertilization in research, teaching and mentoring. The goal is to connect outstanding disease-oriented research with cutting-edge innovation and technologies, taking our ability to care for children to a new level while training the next generation of clinicians and scientists.

The historical ties between Children’s and MIT run deep. Individual scientists and clinicians have teamed up to design new medical devices; to identify gene mutations that underlie cancer and disorders of development; to create new approaches to drug delivery using slow-release polymers to extend medication efficacy;

Read Full Story | Leave a Comment

From kittens to Fragile X: Do all autisms share a common thread?

(AmberStrocel/Flickr)

Mark Bear’s research interests have taken him from studying vision in kittens to learning and memory in mouse models, and more recently, to the study of Fragile X syndrome, one of the leading genetic causes of autism and intellectual disability in humans. Along the way, he has made several ground-breaking contributions to neuroscience – one of which he described as one of MIT’s presenters at this week’s inaugural CHB-MIT Research Enterprise Symposium, which kicked off an exciting new scientific collaboration between MIT and Children’s.

I have followed Mark Bear’s work since I was an undergraduate at Brown University, where he used to teach the Introduction to Neuroscience course. That’s where I first learned about the seminal experiments in kittens (see this PDF), showing that covering one eye at birth rewires their brains not to “see” out of that eye, work that Bear was continuing to refine. Our paths crossed again more recently due to our common interest in studying autism.

Read Full Story | 1 Comment | Leave a Comment

Neurogenetic disorders: Dreaming the impossible dream

People with autism and most other disorders of brain development have never had medications to treat their core behavioral and cognitive symptoms. The best they can get are drugs targeting secondary problems, like irritability or aggression. But now, a new wave of clinical trials, such as the one we posted about yesterday for Rett syndrome, aims to change this.

In the last decade, scientists have discovered many of the molecular pathways in genetic disorders that can impair cognition and place a child on the autism spectrum—such as tuberous sclerosis complex, Rett syndrome, Fragile X syndrome and Angelman syndrome. These discoveries are suggesting targets for drug treatment, and is changing how these conditions—and perhaps neurodevelopmental disorders generally—are viewed.

Read Full Story | Leave a Comment