Stories about: gene therapy

With no time to lose, parents drive CMT4J gene therapy forward

CMT4J
Talia Duff’s disorder, CMT4J, is a rare form of Charcot-Marie-Tooth. It has been modeled in mice that will soon undergo a test of gene therapy, largely through her parents’ behind-the-scenes work.

In honor of Rare Disease Day (Feb. 28), we salute “citizen scientists” Jocelyn and John Duff.

When Talia Duff was born, her parents realized life would be different, but still joyful. They were quickly adopted by the Down syndrome parent community and fell in love with Talia and her bright smile.

But when Talia was about four, it was clear she had a true problem. She started losing strength in her arms and legs. When she got sick, which was often, the weakness seemed to accelerate.

Talia was initially diagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), an autoimmune disease in which the body attacks its own nerve fibers. Treated with IV immunoglobulin infusions to curb the inflammation, she seemed to grow stronger — but only for a time. Adding prednisone, a steroid, seemed to help. But it also caused bone loss, and Talia began having spine fractures.

“We tried a lot of different things, but she never got 100 percent better,” says Regina Laine, NP, who has been following Talia in Boston Children’s Hospital’s Neuromuscular Center the past several years, together with Basil Darras, MD.That’s when we decided to readdress the possibility that it was genetic.”

Read Full Story | Leave a Comment

A gene therapy advance for muscle-wasting myotubular myopathy

X-linked myotubular myopathy XLMTM gene therapy
Nibs, a carrier of MTM whose descendants provided the basis for the gene therapy study. (Read more of her story.)

For more than two decades, Alan Beggs, PhD, at Boston Children’s Hospital has explored the genetic causes of congenital myopathies, disorders that weaken children’s muscles, and investigated how the mutations lead to muscle weakness. For one life-threatening disorder, X-linked myotubular myopathy (XLMTM), the work is approaching potential payoff, in the form of a clinical gene therapy trial.

Boys with XLMTM are born so weak that they are dependent on ventilators and feeding tubes to survive. Almost half die before 18 months of age.

Read Full Story | Leave a Comment

Gene therapy restores whisper-fine hearing, balance in Usher syndrome mice

gene therapy for deafness
Sensory hair cells contain tiny cilia that get wiggled by incoming sound waves, sparking a signal to the brain that ultimately translates to hearing. Gene therapy restored this tidy “V” formation. (Credit: Gwenaelle Géléoc and Artur Indzkykulian)

The ear is a part of the body that’s readily accessible to gene therapy: You can inject a gene delivery vector (typically a harmless virus) and it has a good chance of staying put. But will it ferry the corrected gene into the cells of the hearing and/or vestibular organs where it’s most needed?

Back in 2015, a Boston Children’s Hospital/Harvard Medical School team reported using gene therapy to restore rudimentary hearing in mice with genetic deafness. Previously unresponsive mice began jumping when exposed to abrupt loud sounds. But the vector used could get the corrected genes only into the cochlea’s inner hair cells. To really restore significant hearing, the outer hair cells need to be treated too.

Read Full Story | Leave a Comment

2017 predictions for biomedicine

2017 predictions for biomedicine

David Williams, MD, is Boston Children’s Hospital’s newly appointed Chief Scientific Officer. He is also president of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and director of Clinical and Translational Research at Boston Children’s. Vector connected with him to get his forecast on where biomedical research and therapeutic development will go in the year ahead.

Read Full Story | Leave a Comment

BCL11A-based gene therapy for sickle cell disease passes key preclinical test

sickle cell gene therapy coming
(unsplash/Pixabay)

Research going back to the 1980s has shown that sickle cell disease is milder in people whose red blood cells carry a fetal form of hemoglobin. The healthy fetal hemoglobin compensates for the mutated “adult” hemoglobin that makes red blood cells stiffen and assume the classic “sickle” shape.

Normally, fetal hemoglobin production tails off after birth, shut down by a gene called BCL11A. In 2008, researchers Stuart Orkin, MD, and Vijay Sankaran, MD, PhD, at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center showed that suppressing BCL11A could restart fetal hemoglobin production; in 2011, using this approach, they corrected sickle cell disease in mice.

Now, the decades-old discovery is finally nearly ready for human testing — in the form of gene therapy. Today in the Journal of Clinical Investigation, Dana-Farber/Boston Children’s researchers report that a precision-engineered gene therapy vector suppressing BCL11A production overcame a key technical hurdle.

Read Full Story | Leave a Comment

Mom-entrepreneur forms gene therapy company to tackle Sanfilippo syndrome

Karen and Ornella Aiach Sanfilippo gene therapy

Sanfilippo syndrome A is a neurodegenerative condition caused by a genetic error in metabolism: because of a missing enzyme, long-chained sugar molecules cannot be broken down. Toxic substrates accumulate in cells, causing a rapid cognitive decline and, later, motor decline. Most affected children die in their teens or earlier.

There is no treatment, and when Karen Aiach’s daughter Ornella was diagnosed with Sanfilippo syndrome A, no companies were even working on the disease.

As a mother, Aiach could not accept that.

Read Full Story | Leave a Comment

Wine used to toast CGD gene therapy trial linked to decades-long scientific journey

CGD
Brenden Whittaker (left) and David Williams, MD (photo: Sam Ogden)

When Brenden Whittaker of Columbus, Ohio, the first patient treated with gene therapy for chronic granulomatous disease (CGD), showed successful engraftment last winter, the gene therapy team lifted glasses for a celebratory toast. The wine they sipped was no ordinary wine. The 2012 Bordeaux blend came from an award-winning California vineyard owned and operated by Robert Baehner, MD, a pioneering pediatric hematologist with ties to Dana-Farber/Boston Children’s Cancer and Blood Disorders Center.

Decades before, Baehner had done fundamental research in CGD, an inherited immune system disorder that occurs when phagocytes, white blood cells that normally help the body fight infection, cannot kill the germs they ingest and thus cannot protect the body from bacterial and fungal infections.

Children with CGD are often healthy at birth, but develop severe infections in infancy and early childhood from bacteria that would cause mild disease or no illness at all in a healthy child. This was true for Whittaker. Diagnosed with CGD when he was 1, his disease became increasingly severe, forcing him to quit school several years ago.

Read Full Story | Leave a Comment

Forty years waiting for a cure: ALD gene therapy trial shows early promise

Ethan and me, June 1977
Ethan and me, June 1977

A small piece of notepaper, folded twice, sits tucked in a slot of the secretary desk in the living room. Every so often, I pull it out, read it, then reread.

Addressed to my mom, the paper has a question and two boxes, one “yes” and one “no,” written with the careful precision of a 7-year-old.

I am sad of Ethan. You too?

A check marks the box.

Yes. Yes, I am sad too.

Learning about adrenoleukodystrophy

My brother Ethan Williams was 9 years old in the fall of 1976, when he began to lose his sight. For my parents, that winter brought an endless round of doctor visits, therapists and lab tests.

Read Full Story | 2 Comments | Leave a Comment

Drug ‘cocktail’ could restore vision in optic nerve injury

regenerating optic nerves cropped
Gene therapy achieved extensive optic nerve regeneration, as shown in white, but adding a potassium channel blocking drug was the step needed to restore visual function. In the future, it might be possible to skip gene therapy and inject growth factors directly. (Fengfeng Bei, PhD, Boston Children’s Hospital)

When Zhigang He, PhD, started a lab at Boston Children’s Hospital 15 years ago, he hoped to find a way to regenerate nerve fibers in people with spinal cord injury. As a proxy, he studied optic nerve injury, which causes blindness in glaucoma — a condition affecting more than four million Americans — and sometimes in head trauma.

By experimenting with different growth-promoting genes and blocking natural growth inhibitors, he was able to get optic nerve fibers, or axons, to grow to greater and greater lengths in mice. But what about vision? Could the animals see?

Read Full Story | 35 Comments | Leave a Comment

Storify: The science and business of cystic fibrosis

Cystic Fibrosis panelWhat happens when you put a doctor who specializes in cystic fibrosis in the same room as two biotech executives, one of whom is a ‘dadvocate’ of a teenager with CF? View the highlights and reactions to a a dynamic panel discussion at the Boston Children’s Hospital Global Pediatric Innovation Summit + Awards with Gregory Sawicki, MD, MPH, director of the Boston Children’s Cystic Fibrosis Center; David Meeker, MD, Genzyme president and CEO; Bob Coughlin, Massachusetts Biotechnology Council president and CEO; and moderator Luke Timmerman, founder and editor of The Timmerman Report.

Read Full Story | Leave a Comment