Stories about: genomic regulation

Finding the long-sought master switch for antibody diversity

The different gene segments your immune system needs to build a diverse selection of antibodies are spread out across huge genomic distances. Frederick Alt may have found the genetic switch that helps manage all of the far flung pieces. (Jeremy Vandel/Flickr)

Imagine for a moment, that you are your immune system. On any given day, you’re faced with host of threats: a virus here, a bacterium there, a new fungus. And don’t forget those wayward cells lurking around the corner, the ones that might become a tumor.

Now, you have to respond to these challenges, but how you do it? Each looks different, meaning that you have to produce a new T or B cell (your two main tools) that can find, mark and guide the attack against each new threat.

Luckily, your T and B cells can turn to three sets of gene segments that, together, contain the genetic raw material for the variety you need. Called the variable (V), diversity (D) and joining (J) segments, they are constantly cut up, shuffled and rejoined by the genome to make new genes – a process called V(D)J recombination – for new receptors (on T cells) or antibodies (from B cells), giving your immune system the most diverse arsenal possible.

Read Full Story | Leave a Comment