Stories about: heart

Heart disease in childhood cancer survivors: Helping keep their hearts healthy

Survivors of childhood cancers may walk around with treatment-related heart damage for decades without knowing it. Ming Hui Chen wants to help these survivors keep their hearts healthy. (qthomasbower/Flickr)

Our success at treating children with cancer has steadily improved in the 40 years since President Nixon announced the War on Cancer. At the time, 3 in 10 children survived a diagnosis of cancer; now upwards of 8 in 10 do. The U.S. alone is home to an estimated 328,000 childhood cancer survivors today.

But as these survivors age, they can experience late effects, long-term medical complications of the very treatments that saved their lives. In fact, 30 years out, survivors are at more risk of dying from treatment-related illness than from cancer recurrence.

Perhaps the most insidious late effect – and the leading cause of non-cancer death at the 30-year mark – is cardiovascular disease.

Treatment-related heart damage can take decades to appear. This long latency means that a woman treated for cancer at age 6 could face a heart attack when she’s 36. And she might never see it coming. “A survivor can walk around for years with minimal symptoms while their cardiovascular disease silently progresses,” says Ming Hui Chen, an adult cardiologist at Children’s Hospital Boston.

Read Full Story | Leave a Comment

Could nanotechnology improve treatment of heart attack and heart failure?

People who have had a heart attack or have coronary artery disease often sustain damage that weakens their heart. Milder forms of heart failure can be treated with medications, but advanced heart dysfunction requires surgery or heart transplant. A team of physicians, engineers and materials scientists at Children’s Hospital Boston and MIT offers two alternative ways to strengthen weakened, scarred heart tissue — both involving nanotechnology.

One approach blends nanotechnology with tissue engineering to create a heart patch laced with gold whose cells all beat in time – as shown in the above video.

The other uses minute nanoparticles that can find their way to dying heart tissue, carrying stem cells, growth factors, drugs and other therapeutic compounds.

Read Full Story | 2 Comments | Leave a Comment

It’s just a hat: Simplicity in innovation

Clinical innovations don't have to be complex. Sometimes, as nurse Karen Sakakeeny has found, an innovation can be as simple as a hat (shown here on a doll). (Courtesy Karen Sakakeeny)

When we think about innovation, especially in health care, our thoughts often turn to the highly complex: new surgical procedures, new drugs, new devices or machines, etc.

But innovation in medicine and patient care doesn’t have to be complex. Sometimes it can be very simple. Like a hat.

Karen Sakakeeny has been a clinical nurse for more than 30 years, spending much of that time in the operating room. While doing a stint in cardiac surgery, she found herself thinking about ways to improve the rewarming process for infants undergoing open heart surgery.

Read Full Story | Leave a Comment

Guiding devices to market, and mending broken hearts

A biodegradable patch for repairing ventral septal defects (VSDs).

Imagine: You’re a pediatric cardiologist who for years has worked on the design of a device that could revolutionize the treatment of a severe atrial arrhythmia. But while you can find a lot of assistance and advice for bringing devices for adults to market, you find little help for devices intended for infants and children. What can you do?

The U.S. Food and Drug Administration could be your best friend. Better known for its role in establishing and enforcing regulations for drug and device safety and information, the FDA is also an advocate, helping bring innovative devices for pediatric treatment into clinical practice. Pedro del Nido, chief of cardiac surgery at Children’s Hospital Boston, outlined the FDA’s advocacy role last week at the monthly Innovators’ Forum hosted by the Children’s Innovation Acceleration Program.

Read Full Story | Leave a Comment

Beating-heart surgery and the search for a killer app

Concept for a new kind of surgical robot (click to enlarge)

Inventors and engineers tend to come up with ideas and technologies first, then say, “This is cool, what’s it good for?” Clinicians tend to say, “Here’s my clinical problem, how can I solve it?”

This was roughly the thinking that brought together Boston University engineer Pierre Dupont and Pedro del Nido, chief of Cardiac Surgery at Children’s Hospital Boston.

Dupont had a vision for a next-generation surgical robot. del Nido had a vision of doing complex cardiac repairs in children while their hearts are still beating. Could they create a viable technology?

Read Full Story | 3 Comments | Leave a Comment

Children’s innovations demonstrated at TEDMED

During breaks at TEDMED, Children’s Hospital Boston is demonstrating a sampling of its technologies. Medgadget, the Internet Journal of Emerging Medical Technologies, came by to watch and posted these videos.

Above, Children’s engineer Pierre Dupont describes a new way of fixing children’s hearts — with enhanced, robot-guided catheters and tiny surgical tools that he’s developing with Pedro del Nido, chief of Cardiac Surgery. We hope these tools (shown at their true miniscule size and in large models) and the robotic system driving them will allow children, especially babies, avoid the rigors of open-heart surgery. Instead, a short-stay catheterization procedure could be performed while their hearts are still beating.

Here, Children’s epidemiologist-informatician John Brownstein explains some of the new features of HealthMap, an Internet-based infectious-disease tracking system. He zeroes in on Haiti’s emerging cholera outbreak, in which a “crisis mappers” community on the ground is sending real-time data to HealthMap via iPhone and iPad.

Read more about innovations at Children’s on our website, and stay with Vectorblog and our Twitter feed (@science4care) for continuing TEDMED coverage.

Read Full Story | Leave a Comment