Stories about: immune system

“Teenage” red blood cells could hold the key to a malaria vaccine

A T cell (right) launches an attack on an immature red blood cell called a reticulocyte. This immune response could help design a malaria vaccine.
A T cell (right) launches an attack on an immature red blood cell (left) infected with a malaria parasite called P. vivax. At the arrow, the T cell breaches the infected cell’s membrane to deliver death-inducing enzymes. Credit: Lieberman lab/Boston Children’s Hospital

Malaria parasite infection, which affects our red blood cells, can be fatal. Currently, there are about 200 million malaria infections in the world each year and more than 400,000 people, mostly children, die of malaria each year.

Now, studying blood samples from patients treated for malaria at a clinical field station in Brazil’s Amazon jungle, a team of Brazilian and American researchers has made a surprising discovery that could open the door to a new vaccine.

“I noticed that white blood cells called killer T cells were activated in response to malaria parasite infection of immature red blood cells,” says Caroline Junqueira, PhD, a visiting scientist at Boston Children’s Hospital and Harvard Medical School (HMS).

For red blood cells, this activity is unusual.

“Infected red blood cells aren’t recognized by our immune system’s T cells in the same way that most other infected cells of the human body are,” says Judy Lieberman, MD, PhD, chair in the Program in Cellular and Molecular Medicine at Boston Children’s Hospital.

Digging deeper, Junqueira, Lieberman and collaborators have found a completely unexpected immune response to malaria parasites that infect immature blood cells called reticulocytes. The revelation could help to design a new vaccine that might be capable of preventing malaria.

Their findings, published today in Nature Medicineuncover special cellular mechanisms and properties specific to “teenaged” reticulocytes and a strain of malaria called Plasmodium vivax that enable our T cells to recognize and destroy both the infected reticulocytes and the parasites inside them.

Read Full Story | Leave a Comment

Getting a grip on genetic loops

Chromatin is housed inside the nucleus. A new discovery about its physical arrangement could pave the way for new therapeutics.
Artist’s rendering of chromatin, which is housed inside the nuclei of mammalian cells. A new discovery about its physical arrangement could pave the way for new therapeutics.

A new discovery about the spatial orientation and physical interactions of our genes provides a promising step forward in our ability to design custom antibodies. This, in turn, could revolutionize the fields of vaccine development and infection control.

“We are beginning to understand the full biological impact that the physical structure and movement of our genes play in regulating health and development,” says Frederick Alt, PhD, director of the Boston Children’s Hospital Program in Cellular and Molecular Medicine (PCMM) and the senior author of the new study, published in the latest issue of Cell.

Recent years of research by Alt and others in the field of molecular biology have revealed that it’s not just our genes themselves that determine health and disease states. It’s also the three-dimensional arrangement of our genes that plays a role in keeping genetic harmony. Failure of these structures may trigger genetic mutations or genome rearrangements leading to catastrophe.

The importance of genetic loops

Crammed inside the nucleus, chromatin, the chains of DNA and proteins that make up our chromosomes, is arranged in extensive loop arrangements. These loop configurations physically confine segments of genes that ought to work together in a close proximity to one another, increasingly their ability to work in tandem.

“All the genes contained inside one loop have a greater than random chance of coming together,” says Suvi Jain, PhD, a postdoctoral researcher in Alt’s lab and a co-first author on the study.

Meanwhile, genes that ought to stay apart remain blocked from reaching each other, held physically apart inside our chromosomes by the loop structures of our chromatin.

But while many chromatin loops are hardwired into certain formations throughout all our cells, it turns out that some types of cells, such as certain immune cells, are more prone to re-arrangement of these loops.

Read Full Story | Leave a Comment

Link found between chronic inflammation, autoimmune disorders and “false alarms”

Viruses (pictured here) have a genetic signature that a receptor called MDA5 recognizes. But when MDA5 confuses the body's own genetic material with that of a virus, disease ensues.
Viruses have a genetic signature that a human receptor called MDA5 recognizes, causing the immune system to attack. But when MDA5 confuses the body’s own genetic material for that of a virus, disease ensues.

The human body’s innate immune system employs a variety of “sensors” for identifying foreign invaders such as viruses. One such viral sensor is a receptor called MDA5, found in every cell of the body.

Inside each cell, MDA5 constantly scans genetic material, checking if it’s native to the body or not. As soon as MDA5 identifies the genetic signature of a viral invader, it trips a system-wide alarm, triggering a cascade of immune activity to neutralize the threat.

But if a genetic mutation to MDA5 causes it to confuse some of the body’s own genetic material for being foreign, “false alarms” can lead to unchecked inflammation and disease. Scientists from Boston Children’s Hospital have discovered a new link between MDA5’s ability to discriminate between “self” and “non-self” genetic material — called RNA duplexes — and a spectrum of autoimmune disorders.

Read Full Story | Leave a Comment

Microbial murder mystery solved

Bacteria, pictured in Petri dish culture here, can become resistant to antibiotics - but not killer cells. Why? New research from Boston Children's Hospital helps solve this microbial murder mystery.Immune cells called “killer cells” target bacteria invading the body’s cells, but how do they do this so effectively? Bacteria can quickly evolve resistance against antibiotics, yet it seems they have not so readily been able to evade killer cells. This has caused researchers to become interested in finding out the exact mechanism that killer cells use to destroy bacterial invaders.

Although one way that killer cells can trigger bacterial death is by inflicting oxidative damage, it has not yet been at all understood how killer cells destroy bacteria in environments without oxygen.

Now, for the first time, researchers have caught killer cells red-handed in the act of microbial murder

Read Full Story | Leave a Comment