Stories about: Judy Lieberman

News Note: A fresh perspective on RNA with big implications for drug development 

RNA-based drugs are the future of therapeuticsRibonucleic acid, or RNA, has long been underappreciated for its role in gene expression. Until recent years, RNA has been thought of merely as a messenger, shuttling DNA’s instructions to the genetic machinery that synthesizes proteins.

But new discoveries of RNA functions, modifications and its ability to transcribe sections of the genome that were previously considered “junk DNA” has led to the discovery of a huge number of new druggable targets.

These new insights into RNA’s complex purposes have largely been uncovered through ever-increasingly sensitive and affordable sequencing methods. As a result, RNA-based drugs now stand to greatly extend our ability to treat diseases beyond the scope of what’s possible with small molecules and biologics.

Although several RND-based drug approaches have already been established, some barriers still prevent these strategies from working broadly. In a review paper for Nature Structural and Molecular Biology, Judy Lieberman, MD, PhD, of the Program in Cellular and Molecular Medicine of Boston Children’s Hospital, lays out where RNA-based drug development currently stands.

Lieberman, who has helped pioneer the RNA-based drug revolution herself, was the first scientist to show in an animal disease model that small, double-stranded RNAs could be used as drugs and leveraged to knock down genes in cells.

Read Lieberman’s review: “Tapping the RNA world for therapeutics.”

Read Full Story | Leave a Comment

Microbial murder mystery solved

Bacteria, pictured in Petri dish culture here, can become resistant to antibiotics - but not killer cells. Why? New research from Boston Children's Hospital helps solve this microbial murder mystery.Immune cells called “killer cells” target bacteria invading the body’s cells, but how do they do this so effectively? Bacteria can quickly evolve resistance against antibiotics, yet it seems they have not so readily been able to evade killer cells. This has caused researchers to become interested in finding out the exact mechanism that killer cells use to destroy bacterial invaders.

Although one way that killer cells can trigger bacterial death is by inflicting oxidative damage, it has not yet been at all understood how killer cells destroy bacteria in environments without oxygen.

Now, for the first time, researchers have caught killer cells red-handed in the act of microbial murder

Read Full Story | Leave a Comment

When antibiotics fail: A potential new angle on severe bacterial infection and sepsis

bacterial infection sepsisBacterial infections that don’t respond to antibiotics are of rising concern. And so is sepsis — the immune system’s last-ditch, failed attack on infection that ends up being lethal itself. Sepsis is the largest killer of newborns and children worldwide and, in the U.S. alone, kills a quarter of a million people each year. Like antibiotic-resistant infections, it has no good treatment.

Reporting this week in Nature, scientists in Boston Children’s Hospital’s Program in Cellular and Molecular Medicine (PCMM) describe new potential avenues for controlling both sepsis and the runaway bacterial infections that provoke it.

Read Full Story | 1 Comment | Leave a Comment

Microptosis: Programmed death for microbes?

trypanosoma parasites immune defense apoptosis microptosis
Trypanosoma parasites in a blood smear. (CDC)

Of the various ways for a cell to die — necrosis, autophagy, etc. — apoptosis is probably the most orderly and contained. Also called programmed cell death (or, colloquially, “cellular suicide”), apoptosis is an effective way for diseased or damaged cells to remove themselves from a population before they can cause problems such as tumor formation.

“Apoptosis has special features,” says Judy Lieberman, MD, PhD, an investigator in Boston Children’s Hospital’s Program in Cellular and Molecular Medicine. “It’s not inflammatory, and it activates death pathways within the cell itself.”

Conventional wisdom holds that apoptosis is exclusive to multicellular organisms. Lieberman disagrees. She thinks that microbial cells — such as those of bacteria and parasites — can die in apoptotic fashion as well. In a recent Nature Medicine paper, she and her team make the case for the existence of what they’ve dubbed “microptosis.” And they think it could be harnessed to treat parasitic and other infections.

Read Full Story | Leave a Comment