Stories about: Laboratories of Cognitive Neuroscience

What’s your lot in life? How you see it may affect your child’s brain

A fieldworker in Canta, Peru administers tablet-based games to a 12-year-old girl, taking a measure of her brain function.
A fieldworker in Peru administers cognitive tests to a 12-year-old girl. While socioeconomic circumstances can vary dramatically, how families perceive and adapt to them may be more critical in brain development.

Studies going back to the 1950s have linked objective socioeconomic factors—like parental income or education—to child health and achievement. Recent studies have extended this research, indicating that parental socioeconomic status (SES) also affects physiologic brain function in children. A new study, while small, is the first to suggest another potent factor: the mother’s self-perceived social status.

Margaret Sheridan, PhD, at Boston Children’s Hospital’s Labs of Cognitive Neuroscience, and colleagues studied 38 children, ages 8 to 12 years. Each child gave a saliva sample to measure levels of the stress hormone cortisol, and 19 also underwent functional MRI of the brain focusing on the hippocampus, a structure responsible for long-term memory formation (required for learning) and for reducing stress responses.

Their mothers, meanwhile, were shown a picture of a ladder and were asked to rank their social status on a scale of 1 to 10 as compared with others in the United States.

Read Full Story | Leave a Comment

Your brain on neglect: The evidence

D Sharon Pruitt/Flickr

If there wasn’t enough reason to be concerned about children suffering psychological and physical neglect—by their family, in foster homes, or from war or weather catastrophes—we now have three good lines of evidence that neglect harms a child’s developing brain.

But there’s also hope that some of this harm can be undone if caught in time.

Impaired IQ

The first evidence comes from cognitive studies done in Romania, where the Bucharest Early Intervention Project (BEIP) has transferred some children reared in its infamous orphanages, selected at random, into quality foster care homes. In 2007, Charles Nelson, PhD, and colleagues documented cognitive impairment in institutionalized children, but also showed improvement when children were placed in good foster homes, especially when they were placed before age 2.

Further evidence—brain imaging—comes from a more recent study by Nelson’s colleague Margaret Sheridan, PhD.

Read Full Story | Leave a Comment

Is it really ADHD? Brain activity may provide an objective measure

The right inferior frontal gyrus, part of the prefrontal cortex, lights up on fMRI when children play a game requiring them to resist a natural impulse. This brain area is naturally in flux between ages 5 and 7, Sheridan has found.

Last month, the American Academy of Pediatrics released new guidelines on attention-deficit hyperactivity disorder (ADHD), lowering the minimum age at which physicians should consider drug treatment from 6 years to 4 years.

But here’s the problem. “Current behavioral criteria for ADHD are most effective only after age 8 or 9,” says Margaret Sheridan of the Laboratories of Cognitive Neuroscience at Children’s Hospital Boston. “If you use them at age 3 to 6, then you’re wrong about half the time, and the child will stop meeting the criteria by age 8.”

Little kids, especially boys, are naturally distractible, impulsive and fidgety. Some mature more slowly; some are just the youngest in their class. Many will grow out of their wild but largely age-appropriate behaviors.

But letting true ADHD fester, explaining symptoms away as “kids just being kids,” deprives children of the benefits of behavioral or pharmacologic treatment at a time when their young brains are highly responsive.

Read Full Story | Leave a Comment

Early brain checkups for dyslexia, autism and more

Researchers are seeking to track the brain at earlier and earlier ages (here, the brain of a newborn baby born 10 weeks prematurely). © FNNDSC 2011

For the third year running, my daughter is participating in a dyslexia study she entered at age 5, just after finishing preschool. Thinking she was part of a game, she spent about 45 minutes lying still in a rocket ship (in reality, an MRI scanner), doing mental tasks she believed would help lost aliens find their way back to their planet.

All the while, her brain was being imaged, helping a team led by Nadine Gaab of Children’s Laboratories of Cognitive Neuroscience to find a pattern indicating that she might be at risk for dyslexia. Such signatures might flag children who could benefit from early intervention, sparing them the frustration of struggling with dyslexia once in school.

Getting brain MRIs from young childrenwithout resorting to sedation — is a difficult feat (Gaab and colleagues shared their protocol in the Journal of Visualized Experiments). But as reported in today’s Boston Globe, Gaab and Children’s neuroradiologist Ellen Grant are pushing the envelope even further, trying to find MRI signatures of dyslexia in infants.

Read Full Story | Leave a Comment