Stories about: Leonard Zon

Stem cell workaround cracks open new leads in Diamond Blackfan anemia

Diamond Blackfan anemia iPS cells hematopoietic progenitor cells
Though not bona-fide stem cells, hematopoietic progenitor cells produce red blood cells when exposed to certain chemicals. Could some of these compounds lead to new drugs for Diamond Blackfan anemia?

Diamond Blackfan anemia (DBA) has long been a disease waiting for a cure. First described in 1938 by Louis K. Diamond, MD, of Boston Children’s Hospital and his mentor, Kenneth Blackfan, MD, the rare, severe blood disorder prevents the bone marrow from making enough red blood cells. It’s been linked to mutations affecting a variety of proteins in ribosomes, the cellular organelles that themselves build proteins. The first mutation was reported in 1999.

But scientists have been unable to connect the dots and turn that knowledge into new treatments for DBA. Steroids are still the mainstay of care, and they help only about half of patients. Some people eventually stop responding, and many are forced onto lifelong blood transfusions.

Researchers have tried for years to isolate and study patients’ blood stem cells, hoping to recapture the disease process and gather new therapeutic leads. Some blood stem cells have been isolated, but they’re very rare and can’t be replicated in enough numbers to be useful for research.

Induced pluripotent stem (iPS) cells, first created in 2006 from donor skin cells, seemed to raise new hope. They can theoretically generate virtually any specialized cell, allowing scientists model a patient’s disease in a dish and test potential drugs.

There’s been just one hitch. “People quickly ran into problems with blood,” says hematology researcher Sergei Doulatov, PhD. “iPS cells have been hard to instruct when it comes to making blood cells.”

Read Full Story | Leave a Comment

Rainbow-hued blood stem cells shed new light on cancer, blood disorders

color-coded blood stem cells
These red blood cells bear color tags made from random combinations of red, green and blue fluorescent proteins. Same-color cells originate from the same blood stem cell (Nature Cell Biology 2016, Henninger et al).

A new color-coding tool is enabling scientists to better track live blood stem cells over time, a key part of understanding how blood disorders and cancers like leukemia arise, report researchers in Boston Children’s Hospital’s Stem Cell Research Program.

In Nature Cell Biology today, they describe the use of their tool in zebrafish to track blood stem cells the fish are born with, the clones (copies) these cells make of themselves and the types of specialized blood cells they give rise to (red cells, white cells and platelets). Leonard Zon, MD, director of the Stem Cell Research Program and a senior author on the paper, believes the tool has many implications for hematology and cancer medicine since zebrafish are surprisingly similar to humans genetically.

Read Full Story | Leave a Comment

Where science connects with care: A Q&A with Leonard Zon

Leonard Zon in the lab

Leonard Zon, MD, is founder and director of the Stem Cell Research Program at Boston Children’s Hospital and an investigator with the Howard Hughes Medical Institute and the Harvard Stem Cell Institute. His laboratory research focuses on stem cell therapies for patients with cancer and blood disorders, using a high-throughput, automated system for screening potential drugs in zebrafish. Zon was cofounder of Scholar Rock and Fate Therapeutics and founder and past president of the International Society for Stem Cell Research.

Your hospital just received a #1 ranking from U.S. News & World Report. What does this mean relative to your role there?

I’ve been at Boston Children’s Hospital for 25 years, and it’s really satisfying to be at the premier institution for clinical care. And we’re very lucky to have one of the premier stem cell programs in the world. I have a strong sense that my impact on society is as a physician-scientist, bringing basic discoveries to the clinic. We’re able to have a huge impact on finding new diagnoses and new therapies for our children.

What inspires you to do your job every day?

As a hematologist I take care of patients who have devastating diseases – a variety of blood diseases and cancer. When I see these children, I’m always wondering, could there be ways to treating them that haven’t been thought of before? Successfully treating a child gives them an entire lifetime of health.

Read Full Story | Leave a Comment

Live imaging captures how blood stem cells take root in the body

For years, the lab of Leonard Zon, MD, director of the Stem Cell Research Program at Boston Children’s Hospital, has sought ways to enhance bone marrow transplants for patients with cancer, serious immune deficiencies and blood disorders. Using zebrafish as a drug-screening platform, the lab has found a number of promising compounds, including one called ProHema that is now in clinical trials.

But truthfully, until now, Zon and his colleagues have largely been flying blind.

“Stem cell and bone marrow transplants are still very much a black box: cells are introduced into a patient and later on we can measure recovery of their blood system, but what happens in between can’t be seen,” says Owen Tamplin, PhD, in the Zon Lab. “Now we have a system where we can actually watch that middle step.”

Read Full Story | Leave a Comment