Stories about: liver

‘Druggable’ cancer target found in pathway regulating organ size

Inactivating NUAK2 curbs cell proliferation in liver cancer
Reducing cancer proliferation: A small molecule that inactivates NUAK2, part of the Hippo/YAP pathway, reduces the number of cancerous cells in the mouse liver. (WEI-CHIEN YUAN/BOSTON CHILDREN’S HOSPITAL)

It’s known that cancer involves unchecked cell growth and that a pathway that regulates the size of organs, known as Hippo, is also involved in cancer. It’s further known that a major player in this pathway, YAP, drives many types of tumors. What’s been lacking is how to turn this knowledge into a practical cancer treatment. In a study published today in Nature Communications, researchers at Boston Children’s Hospital identify a target downstream of YAP, called NUAK2, and show that it can readily be inactivated with a small molecule.

“The Hippo pathway, and especially YAP, has been hard to target with drugs,” says senior study author Fernando Camargo, PhD, of Boston Children’s Stem Cell Research program. “This is the first demonstration of a ‘druggable’ molecule that could be targeted in any type of tumor driven by YAP.”

Read Full Story | Leave a Comment

Clinical drug trial seeks to avoid liver transplant for LAL deficiency

(Image courtesy Ed Neilan)

neilan_edward_dsc9139Second in a two-part series on metabolic liver disease. Read part 1.

According to the American Liver Foundation, about 1 in 10 Americans have some form of liver disease. One rare, under-recognized disorder, lysosomal acid lipase (LAL) deficiency, can fly under the radar until it becomes life-threatening, often requiring a liver transplant. LAL deficiency currently has no specific treatment, but that may change thanks to combined expertise in genetics, metabolism and hepatology.

In recent years, Boston Children’s Hospital’s Director of Hepatology, Maureen Jonas, MD, and the Metabolism Program’s Edward Neilan, MD, PhD, diagnosed three children with LAL deficiency. All three are now enrolled in the first international LAL deficiency clinical trial, with Neilan serving as Boston Children’s principal investigator.

“LAL deficiency is currently under-diagnosed,” Neilan says. “We think the disease is more common than doctors have thought and now, with a treatment in trial, it is of greater importance to identify those patients so they may have better outcomes.”

Read Full Story | Leave a Comment

Transplant surgeon seeks to avoid transplants

First in a two-part series on metabolic liver disease. Read part 2.

Khashayar Vakili, MDIn the clinical world, Boston Children’s Hospital surgeon Khashayar Vakili, MD, specializes in liver, kidney and intestinal transplant surgeries, while in the lab he is doing work which, for some patients, could eliminate the need for a transplant surgeon altogether.

Vakili has been working at Boston Children’s for six years. During his transplant surgery fellowship, he spent several months learning about pediatric liver transplantation from Heung Bae Kim, MD, director of the Boston Children’s Pediatric Transplant Center, which prompted his interest in the field.

“When the opportunity to join the transplant team presented itself, I did not hesitate to accept,” he says.

Read Full Story | Leave a Comment

Recapturing the liver’s fountain of youth

fountain of youth stem cellsThis post is condensed from a report from the Harvard Stem Cell Institute.

The liver has been a model of tissue regeneration for decades, and it’s well known that a person’s liver cells can duplicate in response to injury. Even if three-quarters of the liver is surgically removed, duplication alone can return the organ to its normal functioning mass. It’s why people are able to donate part of their liver to someone in need—like this mother to her son who was born with biliary atresia.

But what about people with more chronic liver damage? Researchers led by Fernando Camargo, PhD, of the Harvard Stem Cell Institute and Boston Children’s Hospital’s Stem Cell Program, have new evidence in mice that it may be possible to repair such liver disease by forcing mature liver cells to turn back the clock and revert to a stem cell-like state, able to generate functional liver progenitor cells to replace damaged tissue.

Read Full Story | Leave a Comment