Stories about: Michela Fagiolini

‘See through,’ high-resolution EEG recording array gives a better glimpse of the brain

Transparent microelectrodes allow EEG recording at the single-neuron level, with simultaneous 2-photon optical imaging of calcium activity.
Transparent microelectrodes allow EEG recording at the single-neuron level, with simultaneous 2-photon optical imaging of calcium activity. (CREDIT: Yi Qiang et al. Sci. Adv. 4, eaat0626 (2018).)

Electroencephalography (EEG), which records electrical discharges in the brain, is a well-established technique for measuring brain activity. But current EEG electrode arrays, even placed directly on the brain, cannot distinguish the activity of different types of brain cells, instead averaging signals from a general area. Nor is it possible to easily compare EEG data with brain imaging data.

A collaboration between neuroscientist Michela Fagiolini, PhD at Boston Children’s Hospital and engineer Hui Fang, PhD at Northeastern University has led to a highly miniaturized, see-through EEG device. It promises to be much more useful for understanding the brain’s workings.

Read Full Story | Leave a Comment

CDKL5: Understanding rare epilepsies, patient by patient, neuron by neuron

CDKL5 epilepsy
Haley with her parents and neurologist Heather Olson (right)

Nine-year-old Haley Hilt has had intractable seizures all her life. Though she cannot speak, she communicates volumes with her eyes. Using a tablet she controls with her gaze, she can tell her parents when her head hurts and has shown that she knows her letters, numbers and shapes.

Haley is one of a growing group of children who are advancing the science around CDKL5 epilepsy, Haley’s newly recognized genetic disorder. When Boston Children’s Hospital geneticist Joan Stoler, MD, diagnosed Haley in 2009, there were perhaps 100 cases known in the world; today, there are estimated to be a few thousand. Haley’s neurologist, Heather Olson, MD, leads a CDKL5 Center of Excellence at the hospital that is bringing the condition into better view.

Read Full Story | 2 Comments | Leave a Comment

Drug ‘cocktail’ could restore vision in optic nerve injury

regenerating optic nerves cropped
Gene therapy achieved extensive optic nerve regeneration, as shown in white, but adding a potassium channel blocking drug was the step needed to restore visual function. In the future, it might be possible to skip gene therapy and inject growth factors directly. (Fengfeng Bei, PhD, Boston Children’s Hospital)

When Zhigang He, PhD, started a lab at Boston Children’s Hospital 15 years ago, he hoped to find a way to regenerate nerve fibers in people with spinal cord injury. As a proxy, he studied optic nerve injury, which causes blindness in glaucoma — a condition affecting more than four million Americans — and sometimes in head trauma.

By experimenting with different growth-promoting genes and blocking natural growth inhibitors, he was able to get optic nerve fibers, or axons, to grow to greater and greater lengths in mice. But what about vision? Could the animals see?

Read Full Story | 76 Comments | Leave a Comment

Visionary research on Rett syndrome

Mice with the mutation causing Rett syndrome (middle panel) have an excess of inhibitory connections as compared with normal mice (left panel) and mutated mice reared with no visual stimulation (right panel). Inhibitory connections were also reduced by manipulating the NMDA receptor, restoring a more normal balance of inhibition/excitation. (IMAGE COURTESY MICHELA FAGIOLINI/BOSTON CHILDREN’S HOSPITAL)

Research just published in Neuron offers some interesting clues about Rett syndrome, a tragic disease that causes initially healthy girls to lose their ability to speak and to develop motor and respiratory problems. Working with a mouse model, the Boston Children’s Hospital lab of Michela Fagiolini, PhD, explored how the causative mutations, affecting the MECP2 gene, disrupt brain circuitry and function. The team found that the circuit damage can be undone by targeting the NMDA receptor, tipping the brain toward the right balance of inhibition and excitation. They’re now exploring possible pharmaceutical approaches.

The study also suggests that changes in the visual system are a tip-off to what’s going on in the brain as a whole.

Read Full Story | Leave a Comment