Stories about: myocardial infarction

Modified RNA offers drug-like approach to regenerating heart tissue

In mice, VEGF-A modRNA visibly improved blood supply to heart muscle (right image).
In mice, VEGF-A modRNA visibly improved blood supply to heart muscle (right image) as compared with no treatment.

Heart attacks cause the death of billions of the heart’s muscle cells. If these cardiomyocytes could be made to regenerate after an infarct, the heart could potentially be mended and its function restored.

Researchers have struggled to find the right approach to cardiac regeneration. Cell transplants have been tried, but the cells don’t engraft well long term and haven’t shown efficacy. Gene therapy to spur regeneration has been tested in animals, but dosage is hard to control and there’s a risk of genes going where they shouldn’t, causing tumors and other problems. Protein drugs have been tried, but they have short half-lives, being degraded or eliminated by the body before they can do much good. They are also hard to target to the heart.

A more recent approach to cardiac regeneration is to stimulate the body itself—and, specifically, progenitor cells— to repair the heart from within.

Read Full Story | Leave a Comment

Could nanotechnology improve treatment of heart attack and heart failure?

People who have had a heart attack or have coronary artery disease often sustain damage that weakens their heart. Milder forms of heart failure can be treated with medications, but advanced heart dysfunction requires surgery or heart transplant. A team of physicians, engineers and materials scientists at Children’s Hospital Boston and MIT offers two alternative ways to strengthen weakened, scarred heart tissue — both involving nanotechnology.

One approach blends nanotechnology with tissue engineering to create a heart patch laced with gold whose cells all beat in time – as shown in the above video.

The other uses minute nanoparticles that can find their way to dying heart tissue, carrying stem cells, growth factors, drugs and other therapeutic compounds.

Read Full Story | 2 Comments | Leave a Comment