
Children’s cancers pose unique challenges. They’re not caused by the same kinds of genetic mutations that cause adult cancers, and only a minority of their mutations can be targeted with drugs. In a recent study, Kimberly Stegmaier, MD, at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and her colleagues systematically deleted every gene in the genome in a number of childhood cancers. This led them to previously unknown — and targetable — genes that help drive tumor growth.
But Stegmaier is also interested in epigenetic regulators — proteins that help control the regulation of genes and contribute to many pediatric cancers. They’re a hot subject of research: Child cancers tend to arise in developing tissues, and epigenetic regulators are active during early development. Clinical trials are starting to test drugs that inhibit epigenetic cancer-promoting factors.
There’s a problem, though: Cancers often become resistant to targeted inhibitors, including epigenetic inhibitors. So, again using genome-wide approaches, Stegmaier set out to find ways to overcome this resistance. …