Stories about: neurodegenerative disease

Gene therapy halts progression of cerebral adrenoleukodystrophy in clinical trial

David Williams, MD, the principal investigator of the clinical trial, discusses gene therapy and its impact on children with adrenoleukodystrophy

Adrenoleukodystrophy — depicted in the 1992 movie “Lorenzo’s Oil” — is a genetic disease that most severely affects boys. Caused by a defective gene on the X chromosome, it triggers a build-up of fatty acids that damage the protective myelin sheaths of the brain’s neurons, leading to cognitive and motor impairment. The most devastating form of the disease is cerebral adrenoleukodystrophy (CALD), marked by loss of myelin and brain inflammation. Without treatment, CALD ultimately leads to a vegetative state, typically claiming boys’ lives within 10 years of diagnosis.

But now, a breakthrough treatment is offering hope to families affected by adrenoleukodystrophy. A gene therapy treatment effectively stabilized CALD’s progression in 88 percent of patients, according to clinical trial results reported in the New England Journal of Medicine. The study was led by researchers from the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Massachusetts General Hospital.

Read Full Story | Leave a Comment

Forty years waiting for a cure: ALD gene therapy trial shows early promise

Ethan, who was diagnosed with ALD when he was 9, with his sister Emily
Ethan and me, June 1977

A small piece of notepaper, folded twice, sits tucked in a slot of the secretary desk in the living room. Every so often, I pull it out, read it, then reread.

Addressed to my mom, the paper has a question and two boxes, one “yes” and one “no,” written with the careful precision of a 7-year-old.

I am sad of Ethan. You too?

A check marks the box.

Yes. Yes, I am sad too.

Learning about adrenoleukodystrophy

My brother Ethan Williams was 9 years old in the fall of 1976, when he began to lose his sight. For my parents, that winter brought an endless round of doctor visits, therapists and lab tests.

Read Full Story | 2 Comments | Leave a Comment

Mitochondria running amok: Can we stop them from moving to treat Parkinson’s disease?

(Louisa Howard/Wikimedia Commons)

Mitochondria, as you may know, are the engines that power cells. They’re always in motion, supplying energy wherever it’s needed. In brain cells, mitochondria especially have to hoof it around, traveling out into the axons and dendrites to fuel the energy-intensive task of communicating with other cells.

But in at least one form of Parkinson’s disease, that movement becomes a problem: the genetic mutations causing the disease leave neurons unable to make the fidgety organelles hold still. Without this ability, the dopamine-producing neurons in the brain’s substantia nigra can’t safely dispose of mitochondria when they go bad, and the neurons die or become impaired.

“When damaged, mitochondria produce reactive oxygen species that are highly destructive, and can fuse with healthy mitochondria and contaminate them, too,” explains Tom Schwarz, of the F.M. Kirby Neurobiology Center at Children’s Hospital Boston, senior investigator on a study published in Cell today. “It’s the equivalent of an environmental disaster in the cell.”

Read Full Story | Leave a Comment