Cells throughout the human body are constantly being damaged as a part of natural life, normal cellular processes, UV and chemical exposure and environmental factors — resulting in what are called DNA double-strand breaks. Thankfully, to prevent the accumulation of DNA damage that could eventually lead to cell dysfunction, cancer or death, the healthy human body has developed ways of locating and repairing the damage.
Unfortunately, these DNA repair mechanisms themselves are not impervious to genetic errors. Genetic mutations that disrupt DNA repair can contribute to devastating disease.
Across the early-stage progenitor cells that give rise to the human brain’s 80 billion neuronal cells, genomic alterations impacting DNA repair processes have been linked to neuropsychiatric disorders and the childhood brain cancer medulloblastoma. But until now, it was not known exactly which disruptions in DNA repair were involved.
A Boston Children’s Hospital team led by Frederick Alt, PhD, has finally changed that. …