Stories about: neuroscience

Sensory processing problems in autism: Mice reveal brain mechanisms, treatment potential

sensory processing autism
(Image courtesy Nadine Gogolla)

Families of children with autism spectrum disorder have long noted sensory processing difficulties such as heightened sensitivity to noise, touch or smell—or even specific foods or clothing textures—earning sensory processing a place in the official DSM-5 description of the disorder.

“A high proportion of kids with autism spectrum disorder will have difficulty tolerating certain kinds of sensory inputs,” says Carolyn Bridgemohan, MD, co-director of the Autism Spectrum Center at Boston Children’s Hospital. Others, she adds, are less sensitive to certain stimuli, showing a higher tolerance for pain or excessively hot or cold temperatures.

A study published last week in Neuron uses mouse models to shed new light on the brain mechanisms that underlie sensory processing abnormalities in autism.

Read Full Story | 1 Comment | Leave a Comment

Can old peripheral nerves learn new tricks? Only the Schwann cells know for sure

peripheral nerve injury

About six weeks ago, a glass shattered in my hand, severing the nerve in my pinky finger. The feeling in my fingertip still hasn’t returned, and now I know why: I’m too old.

Going back to World War II, it’s been speculated that recovery of peripheral nerve injuries—like those in limbs and extremities—is influenced by age. And studies indicate that peripheral neuropathy is common in people over 65, including those who have received cancer chemotherapy, and often unexplained.

“When you’re very young, the system is very plastic and able to regenerate,” Michio Painter told me recently. He is a graduate student in the laboratory of Clifford Woolf, PhD, director of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “After that, there’s a gradual decline. By the age of 30, much of this plasticity is gone.”

Traditionally, this decline has been thought to reflect age-related differences in neurons’ ability to regrow, but when Painter studied neurons in a dish, he couldn’t confirm this.

Read Full Story | Leave a Comment

Does musical training help kids do better in school?

music and executive functionMy daughter just surprised me by signing up for fifth grade band starting this fall. To my further delight, some new research—using both cognitive testing and brain imaging—suggests that as she practices her clarinet, she also may be honing her executive functions.

Like a CEO who’s on top of her game, executive functions—separate from IQ—are those high-level brain functions that enable us to quickly process and retain information, curb impulsive behaviors, plan, make good choices, solve problems and adjust to changing cognitive demands. While it’s already clear that musical training relates to cognitive abilities, few previous studies have looked at its effects on executive functions specifically.

The study, appearing this week in PLOS ONE, compared children with and without regular musical training, as well as adults. To the researchers’ knowledge, it’s the first such study to use functional MRI (fMRI) of brain areas associated with executive function and to adjust for socioeconomic factors.

Read Full Story | Leave a Comment

Your brain on soccer: Thinking with your feet

Classic Penfield motor homunculus could be different in soccer playersOne of my very favorite images in science, Dr. Wilder Penfield’s classic motor homunculus, shows how much brain real estate is devoted to controlling movement of different parts of the body. Notice the huge hands and the tiny feet. As the World Cup gets underway, soccer fan Jeffrey Holt, PhD, also a Boston Children’s Hospital neuroscientist, writes that soccer is more than just a great sport, it’s “a triumphant display of the incredible plasticity of the human brain… because the soccer player is limited by one simple rule: no hands!”

Though no one’s actually taken a look, Holt imagines that the brains of great soccer players like Cristiano Ronaldo, Lionel Messi or Neymar would have much expanded neural representation of the feet. Read more in his post on WBUR-Boston’s Cognoscenti blog.

Read Full Story | Leave a Comment

Neuronal migration and a well-configured cortex: A neuroscientist looks back

Normal brain and Double Cortex-Courtesy Christopher Walsh(Above: In double cortex syndrome, causing epilepsy and mental retardation, an extra cortex forms just beneath the cerebral cortex [right]. The causative DCX mutation interferes with migration of neurons during the cortex’s early development. Courtesy Walsh Lab)

The journal Neuron, celebrating its 25th anniversary, recently picked one influential neuroscience paper from each year of the publication. In this two-part series, we feature the two Boston Children’s Hospital’s scientists who made the cut. The Q&A below is adapted with kind permission from Cell Press. (See part 1)

Key to well-tuned brain function is the migration of neurons to precise locations as the brain develops. The long journey begins deep inside the brain and ends in the outer cerebral cortex—where our highest cognitive functions lie. Christopher Walsh, MD, PhD, has shown that several genetic mutations causing neurodevelopmental disorders disrupt this neuronal migration, landing neurons in the wrong places. Each gene governs a specific sub-task: one kicks off the migration process; others stop migration when neurons have arrived in the right location.

Read Full Story | Leave a Comment

Microglia’s role in brain development: A neuroscientist looks back

The journal Neuron, celebrating its 25th anniversary, recently picked one influential neuroscience paper from each year of the publication. In this two-part series, we feature the two Boston Children’s Hospital’s scientists who made the cut. The Q&A below is adapted with kind permission from Cell Press.

Microglial cell with synapses
CAUGHT IN THE ACT: This microglial cell is from the lateral geniculate nucleus, which receives visual input from the eyes. The red and blue are synapses that it has engulfed. (Blue synapses represent inputs from the same-side eye; red, the opposite-side eye.)

In 2012, Beth Stevens, PhD, and colleagues provided a new understanding of how glial cells shape healthy brain development. Glia were once thought to be merely nerve “glue” (the meaning of “glia” from the Greek), serving only to protect and support neurons. “In the field of neuroscience, glia have often been ignored,” Stevens told Vector last year.

No longer. Stevens’s 2012 paper documented that microglia—glial cells best known for their immune function—are no passive bystanders. They get rid of excess connections, or synapses, in the developing brain the same way they’d dispatch an invading pathogen—by eating them.

Read Full Story | Leave a Comment

What’s your lot in life? How you see it may affect your child’s brain

A fieldworker in Canta, Peru administers tablet-based games to a 12-year-old girl, taking a measure of her brain function.
A fieldworker in Peru administers cognitive tests to a 12-year-old girl. While socioeconomic circumstances can vary dramatically, how families perceive and adapt to them may be more critical in brain development.

Studies going back to the 1950s have linked objective socioeconomic factors—like parental income or education—to child health and achievement. Recent studies have extended this research, indicating that parental socioeconomic status (SES) also affects physiologic brain function in children. A new study, while small, is the first to suggest another potent factor: the mother’s self-perceived social status.

Margaret Sheridan, PhD, at Boston Children’s Hospital’s Labs of Cognitive Neuroscience, and colleagues studied 38 children, ages 8 to 12 years. Each child gave a saliva sample to measure levels of the stress hormone cortisol, and 19 also underwent functional MRI of the brain focusing on the hippocampus, a structure responsible for long-term memory formation (required for learning) and for reducing stress responses.

Their mothers, meanwhile, were shown a picture of a ladder and were asked to rank their social status on a scale of 1 to 10 as compared with others in the United States.

Read Full Story | Leave a Comment

Selectively silencing itch: Itch-specific nerves let in relief

Illustration: David Roberson
Illustration: David Roberson

This post originally appeared in longer form on Harvard Medical School’s news site. Try not to scratch when you read it.

There’s itch, and then there’s itch.

New research has revealed distinct sets of itch-generating neurons that explain why current itch therapies often fail. It also suggests new ways to selectively silence itch.

“We think this [research] has therapeutic implications,” says Clifford Woolf, PhD, director of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital and professor of neurology at Harvard Medical School (HMS).

While itch is more aggravating than life-threatening, Woolf and HMS graduate student David Roberson hope their work might one day ease the torment itch can cause, particularly in children.

“If you go into the pediatric immunology wards, you see little kids with their hands in mittens or sometimes tied down because they scratch themselves to a point where they damage themselves,” says Woolf.

Read Full Story | Leave a Comment

A match made in heaven: The Children’s/MIT Research Enterprise

Crossing the river has had benefits that go back decades (Roger Wollstadt/Flickr, 1975)

It’s inspiring to see what happens when a hospital dedicated to providing the best treatments for children partners with a world-class technology and engineering institution.  Children’s Hospital Boston and MIT have embarked upon an exciting program of collaboration and cross-fertilization in research, teaching and mentoring. The goal is to connect outstanding disease-oriented research with cutting-edge innovation and technologies, taking our ability to care for children to a new level while training the next generation of clinicians and scientists.

The historical ties between Children’s and MIT run deep. Individual scientists and clinicians have teamed up to design new medical devices; to identify gene mutations that underlie cancer and disorders of development; to create new approaches to drug delivery using slow-release polymers to extend medication efficacy;

Read Full Story | Leave a Comment

Deconstructing vision: Motion, critical windows and curing blindness in India

(luisar/Flickr)

What if blind eyes could see? What does that mean?

That’s the question neuroscientist Pawan Sinha and his team at MIT has begun to answer in a uniquely humanitarian and scientific endeavor.

Project Prakash (named for the Sanskrit word for “light”) intended, at first, to cure blind children in India. It’s a noble effort, given that India has the world’s highest population of blind people, less than half of whom survive to their third birthday and less than one percent of whom are employable.

Sinha’s team screened 20,000 blind Indian children and treated 700 of them for correctable problems such as cataracts. As Sinha recounted at last month’s One Mind for Research forum, these 700 children now can see.

Sort of.

Read Full Story | Leave a Comment