Stories about: neurosurgery

Shunt-flushing device for hydrocephalus gets FDA clearance; could help patients avoid extra surgery

A new shunt-flushing device flushes out shunt blockages noninvasively.
Brain shunts frequently clog up, requiring surgical repair or replacement. A new device flushes out the blockages with the press of a button. (Wikimedia/Adobe Images)

Children with hydrocephalus often have shunts implanted to drain the excess cerebrospinal fluid that builds up inside their brain. Unfortunately, shunts have a tendency to plug up. This potentially life-threatening event necessitates emergency surgery to correct or replace the shunt.

“If you have a shunt, you are always worried about what might happen in the future,” says Joseph Madsen, MD, a neurosurgeon at Boston Children’s Hospital. “Close to half of shunts will have a revision within the first year of implantation. About 80 percent will require a revision within 10 years.”

Last week, the FDA cleared a device originally conceived by Madsen that can potentially flush out a clogged shunt noninvasively, avoiding the need for surgery in both children and adults. The neurosurgeon or other trained healthcare professional could simply press a button at the back of the patient’s head, just under the skin, in an office setting, Madsen says.

Read Full Story | Leave a Comment

Robot-enhanced neurosurgery for nimbler seizure mapping

implanting electrodes for seizure monitoring, with robotic assistance
Scellig Stone and Joseph Madsen in surgery with the robot.

Head shaved, a little boy rests on the operating table, deep under anesthesia. His parents have brought him to Boston Children’s Hospital in hopes of determining the cause of his seizures. Now, neurosurgeons Scellig Stone, MD, PhD, Joseph Madsen, MD, and their colleagues in the Epilepsy Center are performing a procedure designed to monitor seizure activity in the 3-year-old’s brain.

But as the team members crowd around the table, they’re not alone. With the push of a button, a large robotic arm rotates and lowers right next to the boy’s head, helping the physicians pinpoint the precise location to drill. “This is a real game-changer,” murmurs one of the clinicians observing the surgery. “It’s going to transform the way we practice.”

Read Full Story | Leave a Comment

Patients’ brain tissue unlocks the cellular hideout of Sturge-Weber’s gene mutation

A diagram of the skull and brain showing the leptomeninges, which is affected by Sturge-Weber syndrome
Sturge-Weber syndrome causes capillary malformations in the brain. They occur in the brain’s leptomeninges, which comprise the arachnoid mater and pia mater.

A person born with a port-wine birthmark on his or her face and eyelid(s) has an 8 to 15 percent chance of being diagnosed with Sturge-Weber syndrome. The rare disorder causes malformations in certain regions of the body’s capillaries (small blood vessels). Port-wine birthmarks appear on areas of the face affected by these capillary malformations.

Aside from the visible symptoms of Sturge-Weber, there are also some more subtle and worrisome ones. Sturge-Weber syndrome can be detected by magnetic resonance imaging (MRI). Such images can reveal a telltale series of malformed capillaries in regions of the brain. Brain capillary malformations can have potentially devastating neurological consequences, including epileptic seizures.

Frustratingly, since doctors first described Sturge-Weber syndrome over 100 years ago, the relationship between brain capillary malformations and seizures has remained somewhat unexplained. In 2013, a Johns Hopkins University team found a GNAQ R183Q gene mutation in about 90 percent of sampled Sturge-Weber patients. However, the mutation’s effect on particular cells and its relationship to seizures still remained unknown.

But recently, some new light has been shed on the mystery. At Boston Children’s Hospital, Sturge-Weber patients donated their brain tissue to research after it was removed during a drastic surgery to treat severe epilepsy. An analysis of their tissue, funded by Boston Children’s Translational Neuroscience Center (TNC), has revealed the cellular location of the Sturge-Weber mutation. The discovery brings new hope of finding ways to improve the lives of those with the disorder.

Read Full Story | Leave a Comment

Sounding out intracranial pressure with a hearing test

Heidary ear ICP measurement croppedBrain tumors, traumatic head injury and a number of brain and nervous system conditions can cause pressure to build up inside the skull. As intracranial pressure (ICP) rises, it can compress the brain and result in swelling of the optic nerves, damaging brain tissue and causing irreversible vision loss.

That’s what nearly happened to a 13-year-old boy who had three weeks of uncontrolled headaches and sudden double vision. His neuro-ophthalmologist at Boston Children’s Hospital, Gena Heidary, MD, PhD, found reduced vision in the right eye, along with poor peripheral vision, an enlarged blind spot and swelling of both optic nerves.

As Heidary suspected, he had idiopathic intracranial hypertension, a condition that can raise ICP both in children and adults. Heidary performed an operation around the optic nerve to relieve the pressure, and vision in the boy’s right eye gradually improved, though not completely. Heidary has had to monitor his ICP ever since to protect his visual system from further irreversible damage.

Unfortunately, such monitoring currently is pretty invasive.

Read Full Story | Leave a Comment

3D printing helps doctors plan a toddler’s craniofacial surgery

Plastic surgeon John Meara, MD, and neurosurgeon Mark Proctor, MD, in the Craniofacial Anomalies Program at Boston Children’s Hospital are early adopters of 3D printing technology. They put it to good use in caring for Violet, a buoyant toddler who was diagnosed before birth with a rare, complicated skull and facial defect. Using CT images, and with the help of the hospital’s Simulator Program, they were able to build a series of plastic 3D models of Violet’s skull and rehearse her surgery—months before Violet arrived from Oregon.

“I actually feel like I know her, because I’ve seen that model change and grow over the last several months,” said Meara just before the surgery. “We can see and feel the trajectory of where we will have to make certain cuts, and that’s never been possible before.”

Read more on 3D printing in medicine in the Boston Globe. Follow Violet’s journey in this four-part series, and in The New York Times.

Read Full Story | Leave a Comment

Skin-like material can ‘sense’ if surgeons get off track

Experimental setup for calibrating the sensing skin. Each sensor pad is lowered onto the indentation surface placed on a weight-measuring scale. Changes in the channel resistance are processed through analog signal conditioning and a DAC board, and recorded on a computer. (J Neurosurgery: Pediatrics)
Experimental setup for calibrating the sensing skin. Each sensor pad is lowered onto the indentation surface placed on a weight-measuring scale. Changes in the channel resistance are processed through analog signal conditioning and a DAC board, and recorded on a computer. (Images: J Neurosurgery: Pediatrics)
When surgeons perform image-guided minimally invasive procedures using an endoscope, some aspects of visualization and image quality are typically compromised as compared with open surgeries in which the physician can peer into the body. However, a new pressure-sensing material, placed over an endoscope, may someday provide surgeons with additional guidance and protect healthy tissue during these procedures.

“Neurosurgeons, especially pediatric neurosurgeons, are increasingly using neuroendoscopy to perform minimally invasive brain and spine surgery,” notes Patrick Codd, MD, from the Department of Neurosurgery at Boston Children’s Hospital, who was the lead author on a study evaluating this new material.

“Whenever you move to image-guided minimally invasive surgery, there is typically a tradeoff between the resolution of the image and the field of view,” where you have one but not the other, says Pierre Dupont, PhD, chief of Pediatric Cardiac Bioengineering at Boston Children’s and senior author on the study.

Read Full Story | Leave a Comment

Re-imagining neurosurgery: Designing a curvy robot

(Photo: Katherine Cohen)
A lab at Boston Children's Hospital hopes to make neurosurgery as minimally invasive as possible. (Photo: Katherine Cohen)
When Patrick Codd, MD, removed a toddler’s deep brain tumor not long ago at Massachusetts General Hospital, he first put a catheter inside the boy’s head to drain the excess fluid that had built up. He and the neurosurgery team then removed a large portion of the child’s skull, exposed the brain and dissected through the brain tissue, using a microscope, until he could reach the tumor, which the team then removed.

The boy is doing fine, but Codd and his mentors at Boston Children’s Hospital—Joseph Madsen, MD, and Pierre Dupont, PhD, chief of Pediatric Cardiac Bioengineering—had a vision: Could the tumor have been removed via the same catheter that he used to drain the fluid, leaving the rest of the brain intact?

Standard surgical techniques—and even newer ones that use lasers or go into the brain through the nose—require surgeons to bore through brain tissue to get to their destination. This carries a risk of injuring sensitive areas as they pass through, like the structures involved in language, as well as a risk for wound infections and complications from extended anesthesia times.

Read Full Story | 2 Comments | Leave a Comment

A day in the life: A pediatric neurosurgeon’s vision

Ed Smith explains the moyamoya operation during a live webcast.

Lindsay Hoshaw contributed to this post.

It’s 7 a.m. and neurosurgeon
Ed Smith, MD
, is downing a Diet Coke as he reviews the MRIs of today’s patients. He sprints up a stairwell to greet his first patient in the pre-operating wing.

Thirteen-year-old Maribel Ramos, about to have brain surgery at Boston Children’s Hospital, sits in her bed fidgeting. Smith reassures her about the operation, promises they’ll shave off as little hair as possible, and gets Maribel to crack a smile by telling her he moonlights as a hairdresser.

Read Full Story | Leave a Comment

Climate on the brain: Neurosurgeon’s work in Africa links hydrocephalus with rainfall

Ed. note: Ben Warf, MD, was just named a 2012 MacArthur fellow, receiving a five-year, $500,000, “genius” award from the John D. and Catherine T. MacArthur Foundation.

We know climate patterns can affect crop yields, fish populations in rivers, people’s allergies and more. Now, for the first time, research has linked weather patterns with a brain disorder in babies typically treated by neurosurgeons—one that causes cognitive impairment, spasticity and blindness.

In East Africa, twice a year, at the midpoint between the rainy and dry seasons, rates of hydrocephalus surge among newborn babies. It starts with a fever and sometimes convulsions; if they survive, the babies develop “water on the brain” and their heads enlarge dramatically.

Ben Warf, MD, a neurosurgeon at Boston Children’s Hospital, discovered this during his years as a medical missionary in Uganda. Working with a non-governmental organization called CURE International, he founded a pediatric neurosurgical hospital, doing about 1,000 operations a year—more than half of them for hydrocephalus—on children from Uganda and surrounding countries.

In the United States, hydrocephalus is typically part of a congenital disorder like spina bifida. But Warf found that 60 percent of the cases he and his Ugandan team were seeing arose from infections in newborns.

Working with mathematicians, Warf and colleagues crunched data from nearly 700 such cases against rainfall data for the children’s home villages, generated by the National Oceanic and Atmospheric Administration,

Read Full Story | 1 Comment | Leave a Comment

Building neurosurgical care in the heart of Africa: One doctor’s story

Warf with the Ugandan hospital’s first five surgical patients

In 2000, Benjamin Warf sold his house and a small farm in Kentucky and left his position as Chief of Pediatric Neurosurgery at the University of Kentucky. After giving away most of their possessions, Warf, his six children, and his wife boarded a plane for Uganda, believing they were leaving the United States for good.

It was the beginning of an extraordinary six-and-a-half-year journey, fraught with violence, racism and difficult living conditions. Warf, at the age of 42, quickly went from being a respected neurosurgeon with many friends to being the strange white man people pointed to and laughed at on the street.

Read Full Story | 18 Comments | Leave a Comment