Stories about: population research

Forecasting the convergence of artificial intelligence and precision medicine

Image of artificial DNA, which in combination with other artificial intelligence could contribute to an artificial model of the immune system
Will an artificial model of the immune system be the key to discovering new, precision vaccines?

This is part I of a two-part blog series recapping the 2018 BIO International Convention.

At the 2018 BIO International Convention last week, it was clear what’s provoking scientific minds in industry and academia — or at least those of the Guinness-world-record-making 16,000 people in attendance. Artificial intelligence, machine learning and their implications for tailor-made medicine bubbled up across all BIO’s educational tracks and a majority of discussions about the future state of biotechnology. Panelists from Boston Children’s Hospital also contributed their insights to what’s brewing at the intersection of these burgeoning fields.

Isaac Kohane, MD, PhD, former chair of Boston Children’s Computational Health and Informatics Program, spoke on a panel about how large-scale patient data — if properly harnessed and analyzed for health and disease trends — is a virtual goldmine for precision medicine insights. Patterns gleaned from population health data or electronic health records, for example, could help identify which subgroups of patients who might respond better to specific therapies.

According to Kohane, who is currently the Marion J. Nelson Professor of Biomedical Informatics and Pediatrics at Harvard Medical School (HMS), we will soon be leveraging artificial intelligence to go through patient records and determine exactly what doctors were thinking when they saw patients.

“We’ve seen again and again that data abstraction by artificial intelligence is better than abstraction by human analysts when performed at the scale of millions of clinical notes across thousands of patients,” said Kohane.

And based on what we heard at BIO, artificial intelligence will revolutionize more than patient data mining. It will also transform the way we design precision therapeutics — and even vaccines — from the ground up.

Read Full Story | Leave a Comment

Scientists find link between increases in local temperature and antibiotic resistance

Image representing the rise of antibiotic resistance
Illustration by Fawn Gracey

Over-prescribing has long been thought to increase antibiotic resistance in bacteria. But could much bigger environmental pressures be at play?

While studying the role of climate on the distribution of antibiotic resistance across the geography of the U.S., a multidisciplinary team of epidemiologists from Boston Children’s Hospital found that higher local temperatures and population densities correlate with higher antibiotic resistance in common bacterial strains. Their findings were published today in Nature Climate Change.

“The effects of climate are increasingly being recognized in a variety of infectious diseases, but so far as we know this is the first time it has been implicated in the distribution of antibiotic resistance over geographies,” says the study’s lead author, Derek MacFadden, MD, an infectious disease specialist and research fellow at Boston Children’s Hospital. “We also found a signal that the associations between antibiotic resistance and temperature could be increasing over time.”

During their study, the team assembled a large database of U.S. antibiotic resistance in E. coli, K. pneumoniae and S. aureus, pulling from hospital, laboratory and disease surveillance data documented between 2013 and 2015. Altogether, their database comprised more than 1.6 million bacterial specimens from 602 unique records across 223 facilities and 41 states.

Read Full Story | Leave a Comment

SHRINE: Clinical & population research by the numbers

Clinical research is all about numbers. A new informatics network called SHRINE could help make it easier to get find out if the numbers of patients are there to answer complex questions. (victoriapeckham/Flickr)
Ed. note: This morning at 8:15 EDT, Isaac Kohane, MD, PhD, will tell the audience at TEDMED 2013 about his goal of using every clinical visit to advance medical science. 

To preview his talk, we’ve updated a past Vector story about SHRINE, a system Kohane helped develop to allow scientists to use clinical data from multiple hospitals for research.

Clinical research really comes down to a numbers game. And those numbers can be the bane of the clinical researcher. If there aren’t enough patients in a study, its results could be statistically meaningless. But getting enough patients for a study, particularly for rare diseases, can be a daunting challenge.

The Shared Research Information Network (or SHRINE) could help solve this vexing problem. Developed through Harvard Catalyst by a team led by Isaac “Zak” Kohane, MD, PhD, director of Boston Children’s Hospital’s Informatics Program, SHRINE links the clinical databases of participating Harvard-affiliated hospitals—currently Boston Children’s Hospital, Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Massachusetts General Hospital—letting researchers at those hospitals see how many patients from those hospitals meet selected criteria.

Why is this important?

Read Full Story | Leave a Comment

SHRINE: Clinical and population research by the numbers

Clinical research is all about numbers. A new informatics network called SHRINE could help make it easier to get find out if the numbers of patients are there to answer complex questions. (victoriapeckham/Flickr)

As we’ve discussed before, clinical research really comes down to a numbers game. But getting enough patients for a study, particularly for rare diseases, can be a daunting challenge. Similarly, it can be hard to tell whether observations made in just two or three patients, say a possible new medication interaction or a new diagnostic presentation, are part of a trend – one that’s worth grant money to study.

The Shared Research Information Network (or SHRINE) could help solve these vexing problems by mining data across hospitals. Developed through Harvard Catalyst by a team led by Isaac “Zak” Kohane, director of the Children’s Hospital Informatics Program, SHRINE links the clinical databases of participating Harvard-affiliated hospitals – currently Children’s, Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Massachusetts General Hospital – letting researchers see the numbers of patients seen at those hospitals who meet selected criteria.

Why is this important?

Read Full Story | Leave a Comment