Stories about: premature infants

Bringing MRI to vulnerable newborns

Premature newborn in small-bore MRI magnet-courtesy Cincinnati Children's
A 4.2-lb baby girl in the new 1.5 Tesla MRI magnet, designed for use in the NICU. (Images courtesy of Cincinnati Children’s Hospital Medical Center)
Charles Dumoulin, PhD, is the director of the Imaging Research Center at Cincinnati Children’s Hospital Medical Center (CCHMC) and a professor of pediatric radiology at University of Cincinnati College of Medicine. He led the team of scientists and engineers from CCHMC’s Imaging Research Center who won the Clinical Innovation Award at Boston Children’s Hospital’s National Innovation Pediatric Summit + Awards in September.

Experience suggests that magnetic resonance imaging (MRI) and advanced MR techniques such as spectroscopy and diffusion imaging offer substantial benefits when diagnosing problems in premature babies. However, today’s MR systems poses significant logistical barriers to imaging these infants. We have been working to change that.

MRI provides an unparalleled ability to visualize anatomy without the hazards of ionizing radiation. Yet premature and sick babies in neonatal intensive care units (NICUs) are usually too delicate to leave the unit. The few babies who receive MRI today must be accompanied by NICU staff during transport to and from the Radiology Department. This process is often a multi-hour ordeal and reduces the staff available to care for other babies in the NICU. Moreover, infants must be imaged in an adult-sized MRI scanner

Read Full Story | Leave a Comment

Babies born extremely premature are surviving. How do they do in the long run?

The NICU at Boston Children's Hospital in 1976.Twenty or thirty years ago, no one would have expected babies born extremely prematurely—between 23 and 25 weeks’ gestation, considered the edge of viability—to survive long enough for their performance as elementary schoolers to be an issue.

But times change. Treatments like surfactants and prenatal steroids, along with improvements in ventilators and nutrition, have often enabled extremely premature children to survive.

The question is now one of long-term development. How will a child born at the edge of viability do—physically, cognitively, intellectually—in the long run? What impairments might he or she face, and how severe will they be?

The typical approach to answering those questions is to carry out a series of physical and cognitive assessments when the child is around 18 to 22 months old. But, as Mandy Brown Belfort, MD, MPH—one of Boston Children’s Hospital’s neonatologists—notes, assessments at that age may not tell you much about how the child will do later on.

Read Full Story | Leave a Comment

The solution to keeping IV lines clear and infection-free? Make them slippery

A slippery coating inspired by the surface of a pitcher plant could help keep IV lines free of bacteria and blood clots. (kleo_marlo/Flickr)

Pick up a piece of IV tubing (should you happen to have one nearby) and run your hand down the length of it. The surface feels pretty smooth, yes?

From the perspective of bacteria and platelets, that same surface is pockmarked with nooks and crannies where they can stick, aggregate and start to form blood clots (in the case of platelets) or hard-to-combat biofilms (in the case of bacteria).

That’s a problem for hospital care. Contaminated central lines (IV lines threaded into deep veins for long periods of time) cause upwards of 41,000 costly and potentially fatal central line-associated bloodstream infections (CLABSIs) in pediatric and adult patients in U.S. hospitals every year. And blood clots can preclude patients, including premature babies, from receiving new lung-protecting treatments because they can’t tolerate anticoagulants.

Both problems may have a single solution. Clinicians in Boston Children’s Department of Newborn Medicine and engineers at Harvard’s Wyss Institute for Biologically Inspired Engineering have collaborated to develop a coating, inspired by pitcher plants, that makes the surfaces of clinical-grade plastics so slippery that platelets and bacteria can’t get a toehold.

Read Full Story | Leave a Comment