Stories about: rare disease

Expectation vs. reality: Rare disease parents’ mixed feelings about genetic research results

rare disease genetic resultsTypically, when you enroll in a study, it’s not with the expectation that you will receive results. In genomics studies, it’s becoming common to give families the option to get individual results — the newborn sequencing study, Baby Seq, is just one example — as an incentive to participate. Families of children with rare disease, especially undiagnosed illnesses, need no incentive: they’re desperate for answers.

But how do families actually feel once they get genetic results? We conducted interviews with nine rare disease parents (six mothers, three fathers) whose children were enrolled at the hospital’s Manton Center for Orphan Disease Research. What we found is more complexity than we expected.

Read Full Story | Leave a Comment

Short telomeres, myriad diseases: The complex mystery of dyskeratosis congenita

dyskeratosis congenita
The chromosome tips known as telomeres can be compromised by many different mutations — with many different effects. (vitstudio/Shutterstock)

Genetic diseases largely fall into two overarching camps. You have simple, single-gene alterations that produce a single, recognizable disease. And you have conditions like diabetes or cardiovascular disease, where many variations in many genes all make small contributions that fuel the illness.

Dyskeratosis congenita (DC) doesn’t fit either profile. While this rare genetic condition manifests in certain predictable ways (bone marrow failure among the most common), there is huge variability between patients. Yet genetics has revealed one common thread: the molecular caps that protect the ends of chromosomes, known as telomeres, are shortened in DC patients. This results in cells that age too quickly.

From there things get complicated, because problems with any of 11 different genes can trigger short telomeres in DC. And DC, it appears, is only the beginning.

Read Full Story | Leave a Comment

Rare diseases: tools, lessons, discovery

rare diseases toolsWhen rare diseases are taken together, they’re not all that rare. Their underlying genes provide biological insights that drive therapeutic advances and often shed light on more common disorders. Thanks to advances in genomics and bioinformatics, growing interest from pharma and a burgeoning citizen science movement, rare disease is poised to rock biomedicine. This Storify recaps a Twitter chat hosted by the NIH (#NIHchat) ahead of Rare Disease Day on February 29. People shared statistics, great examples of rare disease science, directories of diseases/disease organizations and tools for patients, clinicians and researchers.

Read Full Story | Leave a Comment

Nephrotic syndrome: Unexpected insights from genomic sequencing

nephrotic syndrome - SNRS -a glomerulus
Magnified views of a glomerulus from a rat kidney. (Source for all images: Braun DA; et al. Nat Genet 2015 doi:10.1038/ng.3512)

About 1 in 5 cases of the kidney-destroying condition nephrotic syndrome don’t respond to steroid treatment. They are a leading cause of end-stage kidney failure in children and young adults, who are quickly forced to go on dialysis or wait for a kidney transplant.

Thanks in large part to the lab of Friedhelm Hildebrandt, MD, chief of the Division of Nephrology at Boston Children’s Hospital, more is becoming known about this severe condition. Mutations in more than 30 genes have been implicated, all causing dysfunction of glomeruli, the kidney’s filtering units, specifically in cells known as podocytes. Test panels are now clinically available. Yet, in 70 percent of patients, the causative gene is still unknown.

A new study by Hildebrandt and colleagues in this week’s Nature Genetics pinpoints three new, completely unexpected genes, revealing the power of whole-genome sequencing and potentially opening a new treatment route for at least some steroid-resistant cases.

Read Full Story | Leave a Comment

CDKL5: Understanding rare epilepsies, patient by patient, neuron by neuron

CDKL5 epilepsy
Haley with her parents and neurologist Heather Olson (right)

Nine-year-old Haley Hilt has had intractable seizures all her life. Though she cannot speak, she communicates volumes with her eyes. Using a tablet she controls with her gaze, she can tell her parents when her head hurts and has shown that she knows her letters, numbers and shapes.

Haley is one of a growing group of children who are advancing the science around CDKL5 epilepsy, Haley’s newly recognized genetic disorder. When Boston Children’s Hospital geneticist Joan Stoler, MD, diagnosed Haley in 2009, there were perhaps 100 cases known in the world; today, there are estimated to be a few thousand. Haley’s neurologist, Heather Olson, MD, leads a CDKL5 Center of Excellence at the hospital that is bringing the condition into better view.

Read Full Story | 2 Comments | Leave a Comment

How whole-genome sequencing solved my son’s genetic mystery

Titin gene centronuclear myopathy

A longer version of this article was published in the journal Narrative Inquiry in Bioethics as part of a special issue on patients’ experiences with genetic testing.

“Negative.” “Normal.” “Fails to confirm the diagnosis of . . .” “Etiology of the patient’s disease phenotype remains unknown.”

These are words I heard repeatedly in the first 11 years of my son’s life. Even as new genes for my son’s rare muscle disorder were discovered around the world, negative or “normal” genetic test results were reported back to us 13 times.

Read Full Story | Leave a Comment

Rallying a backup gene could boost strength in spinal muscular atrophy

Vivienne-20150819

Ed note: As of November 2016, Vivienne remains stable. On December 23, 2016, her test drug, to be marketed as SPINRAZA (TM), was approved by the Food and Drug Administration for all forms of SMA.

Spinal muscular atrophy (SMA), a condition affecting one in every 6,000 to 10,000 children, is caused by a defect in a gene called SMN1 — which stands for “survival of motor neuron.” The defect leaves children with too little functioning SMN protein to maintain their motor neurons, which begin wasting away. Muscle strength declines and children eventually develop difficulties eating and breathing.

For Vivienne, whose name means “to live,” that meant being slow to reach motor milestones like crawling, cruising and walking as a toddler. For her parents, it meant hearing that her life expectancy would not be normal.

But a new back-door approach seems to be helping Vivienne, now in first grade, at least thus far.

As it happens, most of us carry a backup gene for SMN1 — namely SMN2.

Read Full Story | Leave a Comment

Two big wins for rare disease

Two new developments offer glimmers of hope to patients with rare, hard-to-diagnose conditions—validation of the power of crowd sourcing and the prospect of bringing cognitive computing to rare disease diagnosis. Both developments were announced at the Boston Children’s Hospital Global Pediatric Innovation Summit + Awards (#PedInno15).

The crowd-sourcing challenge, CLARITY Undiagnosed, yesterday announced the findings of 21 teams that competed from seven countries. The winning team, Nationwide Children’s Hospital (Columbus, OH), was awarded $25,000. Invitae Corporation (San Francisco) and Wuxi NextCODE Genomics (Cambridge, MA) were named runners-up.

Each team received DNA sequences and clinical data from five families whose illnesses had eluded many prior diagnostic attempts—in some cases, even prior genomic sequencing.

“These were the toughest of the tough,” says Alan Beggs, PhD, co-organizer of CLARITY Undiagnosed and director of the Manton Center for Orphan Disease Research at Boston Children’s.

Read Full Story | Leave a Comment

Questioning authority: A conversation with Martine Rothblatt

The more you listen to Martine Rothblatt, the more the fact that she’s transgendered becomes one of the less interesting things about her. Instead, you get caught up and inspired by her journey—from satellites to organ farms, from founding a pharmaceutical company to BINA 48, a “mindclone” robot that embodies her wife Bina’s beliefs, attitudes, memories and feelings.

Rothblatt, currently chief of United Therapeutics, is among the world’s highest paid female CEOs. Her motto is, “Do the right thing and the money will take care of itself.”

This is a lightly edited excerpt of her interview with Jane Clayson, guest host of NPR’s On Point.

Read Full Story | Leave a Comment

An online portal for undiagnosed patients

(Mopic/Shutterstock)
(Mopic/Shutterstock)

Prospects are looking up for patients who have no explanation for their symptoms despite extensive investigations and testing. There’s a growing revolution in DNA diagnostics (see yesterday’s example) and ongoing work to bring clarity and meaning to sequencing data. Patients with similar symptoms can find each other like never before, and are increasingly empowered to lead in research and discovery.

Another small but important development was announced yesterday by the National Institutes of Health. The NIH’s Undiagnosed Diseases Network (UDN) has opened up a one-stop online portal called the UDN Gateway where patients and families can apply for access to expert team analysis and testing. (A referral letter from a provider is required.)

Read Full Story | Leave a Comment