Stories about: research models

News Note: Modeling sepsis better to find a cure faster

In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads.
New assessment criteria for monitoring sepsis in pig models could help clinical researchers more accurately evaluate potential sepsis treatments in preclinical experiments. In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads. Credit: Wyss Institute at Harvard University

Sepsis, or blood poisoning, occurs when the body’s response to infection damages its own tissues, leading to organ failure. It is the most common cause of death in people who have been hospitalized, yet no new therapies have been developed in the last 30 years. Many treatments that have prevented death in animal experiments have failed in clinical trials, indicating that a more clinically-relevant sepsis model is needed for therapeutic development.

To bridge this gap, a team of scientists from the Wyss Institute at Harvard University and Boston Children’s Hospital think a better experimental model of sepsis in pigs could help weed out the therapies most likely to succeed in humans. Their method, a scoring criteria to evaluate sepsis in pigs that closely mirrors standard human clinical assessment, is reported in Advances in Critical Care Medicine.

Read Full Story | Leave a Comment

The problem with modeling metastatic cancers: Is it the mouse’s fault?

While the mouse is widely used to model many diseases, including cancer, the results we gain from it rarely translate well to people. But whose fault is it? (Wednesday Elf - Mountainside Crochet/Flickr)

The humble house mouse (or Mus musculus) is probably the most widely used model animal in biomedical research (beating out my favorite, the zebrafish, by a long mile). Millions are studied around the world every year, helping us understand the genetics of health and disease as well as the biology of cancer, diabetes and a host of other conditions. Mouse modeling is also often a major step in developing and getting FDA approval for new drugs.

But the mouse sometimes gets a bad rap in the research world. While it can be an effective and affordable model, and 95 percent of its genes are similar to ours, it is less than ideal for some of the diseases we study with it.

Take cancer, for instance. It’s relatively easy to cure cancer in a mouse; we’ve done it millions of times over. (The late Judah Folkman, MD, founding father of Boston Children’s Hospital’s Vascular Biology Program (VBP) and of the field of angiogenic research, famously said, “If you’re a mouse and you have cancer, we can take good care of you.”) Mouse and human tumor cells are fundamentally different in many ways. And the way that tumors behave in mouse models doesn’t necessarily reflect the way they behave in their natural environment (that is, in us)—a major consideration, especially when it comes to looking for new treatments for cancer that has spread (aka metastasized). More often than not, drugs that are successful in mouse models fail in the clinic.

But is it the mouse’s fault? Or is the problem the way we develop our models and run our experiments?

Read Full Story | Leave a Comment